心电信号的采样频率和分辨率分析

Era Ajdaraga, M. Gusev
{"title":"心电信号的采样频率和分辨率分析","authors":"Era Ajdaraga, M. Gusev","doi":"10.1109/TELFOR.2017.8249438","DOIUrl":null,"url":null,"abstract":"There are various ways a computer can detect QRS complexes, all of which depend on two main factors — the algorithm, and the data. In practice, doctors can pinpoint patient's R-peaks in an electrocardiogram by analyzing the complex morphology of the ECG signal; computers accomplish the same by utilizing different QRS detection algorithms. In this paper, we address the data problem to select the sample rate and resolution that obtain the highest accuracy. For this purpose, we conduct experiments to find the impact of the sampling frequency and resolution on the quality of the QRS detection, by several open-source QRS detection algorithms with multiple variations of data representation. The final goal is to recommend the lowest sampling frequency and smallest sampling resolution (bit depth), that will have sufficient data representation to enable high QRS detection accuracy.","PeriodicalId":422501,"journal":{"name":"2017 25th Telecommunication Forum (TELFOR)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Analysis of sampling frequency and resolution in ECG signals\",\"authors\":\"Era Ajdaraga, M. Gusev\",\"doi\":\"10.1109/TELFOR.2017.8249438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are various ways a computer can detect QRS complexes, all of which depend on two main factors — the algorithm, and the data. In practice, doctors can pinpoint patient's R-peaks in an electrocardiogram by analyzing the complex morphology of the ECG signal; computers accomplish the same by utilizing different QRS detection algorithms. In this paper, we address the data problem to select the sample rate and resolution that obtain the highest accuracy. For this purpose, we conduct experiments to find the impact of the sampling frequency and resolution on the quality of the QRS detection, by several open-source QRS detection algorithms with multiple variations of data representation. The final goal is to recommend the lowest sampling frequency and smallest sampling resolution (bit depth), that will have sufficient data representation to enable high QRS detection accuracy.\",\"PeriodicalId\":422501,\"journal\":{\"name\":\"2017 25th Telecommunication Forum (TELFOR)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Telecommunication Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR.2017.8249438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Telecommunication Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR.2017.8249438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

计算机检测QRS复合体的方法有很多种,所有这些方法都取决于两个主要因素——算法和数据。在实践中,医生可以通过分析心电图信号的复杂形态来精确定位患者的心电图r -峰;计算机通过使用不同的QRS检测算法来完成相同的工作。在本文中,我们解决了数据问题,选择获得最高精度的采样率和分辨率。为此,我们通过几个开源的QRS检测算法进行实验,研究采样频率和分辨率对QRS检测质量的影响,这些算法具有多种不同的数据表示。最终目标是推荐最低采样频率和最小采样分辨率(位深度),这将有足够的数据表示,以实现高QRS检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of sampling frequency and resolution in ECG signals
There are various ways a computer can detect QRS complexes, all of which depend on two main factors — the algorithm, and the data. In practice, doctors can pinpoint patient's R-peaks in an electrocardiogram by analyzing the complex morphology of the ECG signal; computers accomplish the same by utilizing different QRS detection algorithms. In this paper, we address the data problem to select the sample rate and resolution that obtain the highest accuracy. For this purpose, we conduct experiments to find the impact of the sampling frequency and resolution on the quality of the QRS detection, by several open-source QRS detection algorithms with multiple variations of data representation. The final goal is to recommend the lowest sampling frequency and smallest sampling resolution (bit depth), that will have sufficient data representation to enable high QRS detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposing bat inspired heuristic algorithm for the optimization of GMPLS networks Investigation on temporal skewing among O-CDMA code carriers under fiber temperature variations Survey on machine learning algorithms as cloud service for CIDPS Identity provider deployment based on container technology Enhanced bandwidth PIFA antennas for 900/1800 MHz and WiFi 2400 MHz band with a dielectric cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1