不显眼的实时心率变异性分析用于检测直立性失调

R. Richer, B. Groh, Peter Blank, Eva Dorschky, C. Martindale, J. Klucken, B. Eskofier
{"title":"不显眼的实时心率变异性分析用于检测直立性失调","authors":"R. Richer, B. Groh, Peter Blank, Eva Dorschky, C. Martindale, J. Klucken, B. Eskofier","doi":"10.1109/BSN.2016.7516257","DOIUrl":null,"url":null,"abstract":"The possibilities for wearable health care technology to improve the quality of life for chronic disease patients has been increasing within recent years. For instance, unobtrusive cardiac monitoring can be applied to people suffering from a disorder of the autonomic nervous system (ANS) which show a significantly lower heart rate variability (HRV) than healthy people. Although recent work presented solutions to analyze this relationship, they did not perform it during daily life situations. For that reason, this work presents a system for a real-time analysis of the user's HRV on an Android-based mobile device throughout the day. The system was used for the detection of an orthostatic dysregulation which can be an indicator for a disorder of the ANS. Measures for HRV analysis were computed from acquired ECG data and compared before and after a posture change. For triggering the HRV analysis, an IMU-based algorithm which detects stand up events was developed. As a proof of concept for an automatic assessment of an orthostatic dysregulation, a classification based on the derived HRV measures was performed. The performance of the stand up detection was evaluated in the first part of this study. The second part was conducted for the evaluation of the derived HRV measures and involved healthy subjects as well as patients with idiopathic Parkinson's Disease. The results of the evaluation showed a recognition rate of 90.0 % for the stand up detection algorithm. Furthermore, a clear difference in the change of HRV measures between the two groups before and after standing up was observed. The classification provided an accuracy of 96.0%, and a sensitivity of 93.3%. The results demonstrated the possibility of unobtrusive HRV monitoring during daily life situations.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unobtrusive real-time heart rate variability analysis for the detection of orthostatic dysregulation\",\"authors\":\"R. Richer, B. Groh, Peter Blank, Eva Dorschky, C. Martindale, J. Klucken, B. Eskofier\",\"doi\":\"10.1109/BSN.2016.7516257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibilities for wearable health care technology to improve the quality of life for chronic disease patients has been increasing within recent years. For instance, unobtrusive cardiac monitoring can be applied to people suffering from a disorder of the autonomic nervous system (ANS) which show a significantly lower heart rate variability (HRV) than healthy people. Although recent work presented solutions to analyze this relationship, they did not perform it during daily life situations. For that reason, this work presents a system for a real-time analysis of the user's HRV on an Android-based mobile device throughout the day. The system was used for the detection of an orthostatic dysregulation which can be an indicator for a disorder of the ANS. Measures for HRV analysis were computed from acquired ECG data and compared before and after a posture change. For triggering the HRV analysis, an IMU-based algorithm which detects stand up events was developed. As a proof of concept for an automatic assessment of an orthostatic dysregulation, a classification based on the derived HRV measures was performed. The performance of the stand up detection was evaluated in the first part of this study. The second part was conducted for the evaluation of the derived HRV measures and involved healthy subjects as well as patients with idiopathic Parkinson's Disease. The results of the evaluation showed a recognition rate of 90.0 % for the stand up detection algorithm. Furthermore, a clear difference in the change of HRV measures between the two groups before and after standing up was observed. The classification provided an accuracy of 96.0%, and a sensitivity of 93.3%. The results demonstrated the possibility of unobtrusive HRV monitoring during daily life situations.\",\"PeriodicalId\":205735,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2016.7516257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,可穿戴医疗保健技术改善慢性病患者生活质量的可能性一直在增加。例如,不引人注目的心脏监测可以应用于患有自主神经系统(ANS)紊乱的人,这些人的心率变异性(HRV)明显低于健康人。虽然最近的研究提出了分析这种关系的解决方案,但他们并没有在日常生活中执行。因此,这项工作提出了一个系统,可以在基于android的移动设备上全天实时分析用户的HRV。该系统用于检测体位失调,这可能是ANS疾病的一个指标。从获得的ECG数据中计算HRV分析措施,并比较姿势改变前后。为了触发HRV分析,开发了一种基于imu的站立事件检测算法。作为直立性失调自动评估概念的证明,基于衍生HRV测量进行了分类。本研究的第一部分对站立检测的性能进行了评估。第二部分是对衍生HRV测量的评估,涉及健康受试者和特发性帕金森病患者。评价结果表明,站立检测算法的识别率为90.0%。此外,观察到两组站立前后HRV测量值的变化有明显差异。该分类准确率为96.0%,灵敏度为93.3%。结果表明,在日常生活中可以进行不显眼的HRV监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unobtrusive real-time heart rate variability analysis for the detection of orthostatic dysregulation
The possibilities for wearable health care technology to improve the quality of life for chronic disease patients has been increasing within recent years. For instance, unobtrusive cardiac monitoring can be applied to people suffering from a disorder of the autonomic nervous system (ANS) which show a significantly lower heart rate variability (HRV) than healthy people. Although recent work presented solutions to analyze this relationship, they did not perform it during daily life situations. For that reason, this work presents a system for a real-time analysis of the user's HRV on an Android-based mobile device throughout the day. The system was used for the detection of an orthostatic dysregulation which can be an indicator for a disorder of the ANS. Measures for HRV analysis were computed from acquired ECG data and compared before and after a posture change. For triggering the HRV analysis, an IMU-based algorithm which detects stand up events was developed. As a proof of concept for an automatic assessment of an orthostatic dysregulation, a classification based on the derived HRV measures was performed. The performance of the stand up detection was evaluated in the first part of this study. The second part was conducted for the evaluation of the derived HRV measures and involved healthy subjects as well as patients with idiopathic Parkinson's Disease. The results of the evaluation showed a recognition rate of 90.0 % for the stand up detection algorithm. Furthermore, a clear difference in the change of HRV measures between the two groups before and after standing up was observed. The classification provided an accuracy of 96.0%, and a sensitivity of 93.3%. The results demonstrated the possibility of unobtrusive HRV monitoring during daily life situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edemeter: Wearable and continuous fluid retention monitoring Probabilistic sensor network design Tracking body core temperature in military thermal environments: An extended Kalman filter approach A multimodal sensor system for automated marmoset behavioral analysis Accurate personal ultraviolet dose estimation with multiple wearable sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1