非对称RSA密码系统自适应montgomery模乘法器的全定制设计

T. Adiono, Hans Ega, Hans Kasan, S. Fuada, S. Harimurti
{"title":"非对称RSA密码系统自适应montgomery模乘法器的全定制设计","authors":"T. Adiono, Hans Ega, Hans Kasan, S. Fuada, S. Harimurti","doi":"10.1109/ISPACS.2017.8266605","DOIUrl":null,"url":null,"abstract":"The asymmetric RSA cryptosystem requires modulo operations in its encryption and decryption process, which is often realized with Montgomery modular multiplication. In this paper, we proposed a Montgomery multiplier hardware design using only primitive gates, adders, shifters, multiplexers, and registers. Our algorithm is also adaptable, which means that it can be reconfigured for applications with any arbitrary bits. The algorithm involves iteration, and to achieve less transistor count, we realized the iteration by feeding back the calculation results at the output back to the input, instead of connecting the gates in series. These considerations are made to allow us to create a compact custom ASIC design. The design was made with 130nm standard CMOS technology with NMOS and PMOS base width of 0.5|jm and 1 urn respectively. With the algorithm, our 8-bit multiplier ASIC design occupies an area of 0.0266mm2. The design is created and verified with Mentor Graphics™ EDA tools.","PeriodicalId":166414,"journal":{"name":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Full custom design of adaptable montgomery modular multiplier for asymmetric RSA cryptosystem\",\"authors\":\"T. Adiono, Hans Ega, Hans Kasan, S. Fuada, S. Harimurti\",\"doi\":\"10.1109/ISPACS.2017.8266605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The asymmetric RSA cryptosystem requires modulo operations in its encryption and decryption process, which is often realized with Montgomery modular multiplication. In this paper, we proposed a Montgomery multiplier hardware design using only primitive gates, adders, shifters, multiplexers, and registers. Our algorithm is also adaptable, which means that it can be reconfigured for applications with any arbitrary bits. The algorithm involves iteration, and to achieve less transistor count, we realized the iteration by feeding back the calculation results at the output back to the input, instead of connecting the gates in series. These considerations are made to allow us to create a compact custom ASIC design. The design was made with 130nm standard CMOS technology with NMOS and PMOS base width of 0.5|jm and 1 urn respectively. With the algorithm, our 8-bit multiplier ASIC design occupies an area of 0.0266mm2. The design is created and verified with Mentor Graphics™ EDA tools.\",\"PeriodicalId\":166414,\"journal\":{\"name\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2017.8266605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2017.8266605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

非对称RSA密码系统在加解密过程中需要进行模运算,通常用Montgomery模乘法来实现。在本文中,我们提出了一个蒙哥马利乘法器的硬件设计,仅使用原始门,加法器,移位器,多路复用器和寄存器。我们的算法还具有适应性,这意味着它可以针对任何任意位的应用程序进行重新配置。该算法涉及迭代,为了实现更少的晶体管数,我们通过将输出端的计算结果反馈到输入端来实现迭代,而不是将栅极串联起来。这些考虑使我们能够创建一个紧凑的定制ASIC设计。设计采用130nm标准CMOS工艺,NMOS基宽0.5 jm, PMOS基宽1 urn。使用该算法,我们的8位乘法器ASIC设计占地0.0266mm2。该设计是用Mentor Graphics™EDA工具创建和验证的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full custom design of adaptable montgomery modular multiplier for asymmetric RSA cryptosystem
The asymmetric RSA cryptosystem requires modulo operations in its encryption and decryption process, which is often realized with Montgomery modular multiplication. In this paper, we proposed a Montgomery multiplier hardware design using only primitive gates, adders, shifters, multiplexers, and registers. Our algorithm is also adaptable, which means that it can be reconfigured for applications with any arbitrary bits. The algorithm involves iteration, and to achieve less transistor count, we realized the iteration by feeding back the calculation results at the output back to the input, instead of connecting the gates in series. These considerations are made to allow us to create a compact custom ASIC design. The design was made with 130nm standard CMOS technology with NMOS and PMOS base width of 0.5|jm and 1 urn respectively. With the algorithm, our 8-bit multiplier ASIC design occupies an area of 0.0266mm2. The design is created and verified with Mentor Graphics™ EDA tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An anti-copyscheme for laser label based on digitial watermarking A CNN-based segmentation model for segmenting foreground by a probability map A current-feedback method for programming memristor array in bidirectional associative memory Community mining algorithm of complex network based on memetic algorithm Multi-exposure image fusion quality assessment using contrast information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1