{"title":"进化深度神经网络的遗传算法","authors":"E. David, Iddo Greental","doi":"10.1145/2598394.2602287","DOIUrl":null,"url":null,"abstract":"In recent years, deep learning methods applying unsupervised learning to train deep layers of neural networks have achieved remarkable results in numerous fields. In the past, many genetic algorithms based methods have been successfully applied to training neural networks. In this paper, we extend previous work and propose a GA-assisted method for deep learning. Our experimental results indicate that this GA-assisted approach improves the performance of a deep autoencoder, producing a sparser neural network.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Genetic algorithms for evolving deep neural networks\",\"authors\":\"E. David, Iddo Greental\",\"doi\":\"10.1145/2598394.2602287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep learning methods applying unsupervised learning to train deep layers of neural networks have achieved remarkable results in numerous fields. In the past, many genetic algorithms based methods have been successfully applied to training neural networks. In this paper, we extend previous work and propose a GA-assisted method for deep learning. Our experimental results indicate that this GA-assisted approach improves the performance of a deep autoencoder, producing a sparser neural network.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2602287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2602287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic algorithms for evolving deep neural networks
In recent years, deep learning methods applying unsupervised learning to train deep layers of neural networks have achieved remarkable results in numerous fields. In the past, many genetic algorithms based methods have been successfully applied to training neural networks. In this paper, we extend previous work and propose a GA-assisted method for deep learning. Our experimental results indicate that this GA-assisted approach improves the performance of a deep autoencoder, producing a sparser neural network.