使用DICOM标签将医学放射学图像聚类成视觉相似的组

T. Manojlović, Dino Ilic, D. Miletic, Ivan Štajduhar
{"title":"使用DICOM标签将医学放射学图像聚类成视觉相似的组","authors":"T. Manojlović, Dino Ilic, D. Miletic, Ivan Štajduhar","doi":"10.5220/0008973405100517","DOIUrl":null,"url":null,"abstract":": The data stored in a Picture Archiving and Communication System (PACS) of a clinical centre normally consists of medical images recorded from patients using select imaging techniques, and stored metadata information concerning the details on the conducted diagnostic procedures - the latter being commonly stored using the Digital Imaging and Communications in Medicine (DICOM) standard. In this work, we explore the possibility of utilising DICOM tags for automatic annotation of PACS databases, using K -medoids clustering. We gather and analyse DICOM data of medical radiology images available as a part of the RadiologyNet database, which was built in 2017, and originates from the Clinical Hospital Centre Rijeka, Croatia. Following data preprocessing, we used K -medoids clustering for multiple values of K , and we chose the most appropriate number of clusters based on the silhouette score . Next, for evaluating the clustering performance with regard to the visual similarity of images, we trained an autoencoder from a non-overlapping set of images. That way, we estimated the visual similarity of pixel data clustered by DICOM tags. Paired t-test ( p < 0 . 001) suggests a significant difference between the mean distance from cluster centres of images clustered by DICOM tags, and randomly-permuted cluster labels.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups\",\"authors\":\"T. Manojlović, Dino Ilic, D. Miletic, Ivan Štajduhar\",\"doi\":\"10.5220/0008973405100517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The data stored in a Picture Archiving and Communication System (PACS) of a clinical centre normally consists of medical images recorded from patients using select imaging techniques, and stored metadata information concerning the details on the conducted diagnostic procedures - the latter being commonly stored using the Digital Imaging and Communications in Medicine (DICOM) standard. In this work, we explore the possibility of utilising DICOM tags for automatic annotation of PACS databases, using K -medoids clustering. We gather and analyse DICOM data of medical radiology images available as a part of the RadiologyNet database, which was built in 2017, and originates from the Clinical Hospital Centre Rijeka, Croatia. Following data preprocessing, we used K -medoids clustering for multiple values of K , and we chose the most appropriate number of clusters based on the silhouette score . Next, for evaluating the clustering performance with regard to the visual similarity of images, we trained an autoencoder from a non-overlapping set of images. That way, we estimated the visual similarity of pixel data clustered by DICOM tags. Paired t-test ( p < 0 . 001) suggests a significant difference between the mean distance from cluster centres of images clustered by DICOM tags, and randomly-permuted cluster labels.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0008973405100517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0008973405100517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

存储在临床中心图像存档和通信系统(PACS)中的数据通常包括使用选定成像技术从患者那里记录的医学图像,以及存储的有关所进行诊断程序细节的元数据信息——后者通常使用医学数字成像和通信(DICOM)标准存储。在这项工作中,我们探索了利用DICOM标签对PACS数据库进行自动注释的可能性,使用K - medioids聚类。我们收集和分析医学放射学图像的DICOM数据,这些数据是RadiologyNet数据库的一部分,该数据库建于2017年,起源于克罗地亚里耶卡临床医院中心。在数据预处理之后,我们对多个K值进行K - mediids聚类,并根据剪影得分选择最合适的聚类数量。接下来,为了评估图像视觉相似性方面的聚类性能,我们从一组不重叠的图像中训练了一个自编码器。这样,我们估计了DICOM标签聚类的像素数据的视觉相似性。配对t检验(p < 0。001)表明DICOM标签聚类图像与随机排列聚类标签聚类图像到聚类中心的平均距离之间存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups
: The data stored in a Picture Archiving and Communication System (PACS) of a clinical centre normally consists of medical images recorded from patients using select imaging techniques, and stored metadata information concerning the details on the conducted diagnostic procedures - the latter being commonly stored using the Digital Imaging and Communications in Medicine (DICOM) standard. In this work, we explore the possibility of utilising DICOM tags for automatic annotation of PACS databases, using K -medoids clustering. We gather and analyse DICOM data of medical radiology images available as a part of the RadiologyNet database, which was built in 2017, and originates from the Clinical Hospital Centre Rijeka, Croatia. Following data preprocessing, we used K -medoids clustering for multiple values of K , and we chose the most appropriate number of clusters based on the silhouette score . Next, for evaluating the clustering performance with regard to the visual similarity of images, we trained an autoencoder from a non-overlapping set of images. That way, we estimated the visual similarity of pixel data clustered by DICOM tags. Paired t-test ( p < 0 . 001) suggests a significant difference between the mean distance from cluster centres of images clustered by DICOM tags, and randomly-permuted cluster labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm On Spectrogram Analysis in a Multiple Classifier Fusion Framework for Power Grid Classification Using Electric Network Frequency Semantic Properties of cosine based bias scores for word embeddings Double Trouble? Impact and Detection of Duplicates in Face Image Datasets Detecting Brain Tumors through Multimodal Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1