基于提升格式的离散小波变换计算体系

Fabian Sanchez, Carlos A. Fajardo, Carlos A. Angulo, Oscar M. Reyes, C. Bouman
{"title":"基于提升格式的离散小波变换计算体系","authors":"Fabian Sanchez, Carlos A. Fajardo, Carlos A. Angulo, Oscar M. Reyes, C. Bouman","doi":"10.1109/STSIVA.2014.7010160","DOIUrl":null,"url":null,"abstract":"The Discrete Wavelet Transform (DWT) is an important technique for signal analysis, compressing and denoising due to its excellent locality in the time-frequency domain. The DWT is developed by convolutions which demand both a large number of mathematical operations and a large amount of storage. The lifting scheme reduces both computational and storage requirements. We have developed a computational architecture for inverse DWT using the lifting scheme. The design was developed in VHDL and then implemented into a Virtex 5 FPGA. We aim to reach a high throughput and reduce the design area. The architecture takes 3L + N(1-0.5L) clock cycles to compute L levels of 1D reconstruction for data of size N. Some comparisons suggest that our work could be faster than previous works.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational architecture for discrete wavelet transform using lifting scheme\",\"authors\":\"Fabian Sanchez, Carlos A. Fajardo, Carlos A. Angulo, Oscar M. Reyes, C. Bouman\",\"doi\":\"10.1109/STSIVA.2014.7010160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Discrete Wavelet Transform (DWT) is an important technique for signal analysis, compressing and denoising due to its excellent locality in the time-frequency domain. The DWT is developed by convolutions which demand both a large number of mathematical operations and a large amount of storage. The lifting scheme reduces both computational and storage requirements. We have developed a computational architecture for inverse DWT using the lifting scheme. The design was developed in VHDL and then implemented into a Virtex 5 FPGA. We aim to reach a high throughput and reduce the design area. The architecture takes 3L + N(1-0.5L) clock cycles to compute L levels of 1D reconstruction for data of size N. Some comparisons suggest that our work could be faster than previous works.\",\"PeriodicalId\":114554,\"journal\":{\"name\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2014.7010160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离散小波变换(DWT)由于其在时频域中优异的局域性,是一种重要的信号分析、压缩和去噪技术。DWT是由需要大量数学运算和大量存储空间的卷积发展而来的。提升方案减少了计算和存储需求。我们已经开发了一个使用提升方案的反DWT计算架构。该设计是用VHDL语言开发的,然后在Virtex 5 FPGA上实现。我们的目标是达到高吞吐量和减少设计面积。对于大小为N的数据,该架构需要3L + N(1-0.5L)个时钟周期来计算L个级别的1D重建。一些比较表明,我们的工作可能比以前的工作更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational architecture for discrete wavelet transform using lifting scheme
The Discrete Wavelet Transform (DWT) is an important technique for signal analysis, compressing and denoising due to its excellent locality in the time-frequency domain. The DWT is developed by convolutions which demand both a large number of mathematical operations and a large amount of storage. The lifting scheme reduces both computational and storage requirements. We have developed a computational architecture for inverse DWT using the lifting scheme. The design was developed in VHDL and then implemented into a Virtex 5 FPGA. We aim to reach a high throughput and reduce the design area. The architecture takes 3L + N(1-0.5L) clock cycles to compute L levels of 1D reconstruction for data of size N. Some comparisons suggest that our work could be faster than previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system Causality analysis of P300 recordings focused on the localization of active brain areas Novel spectral characteristics of the electrical current waveform to quantifying power quality on LED lamps Comparison of preprocessing methods for diffusion tensor estimation in brain imaging Pattern recognition of hypernasality in voice of patients with Cleft and Lip Palate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1