应用显著性神经生物学模型的动态肾脏MR图像配准

D. Mahapatra, Ying Sun
{"title":"应用显著性神经生物学模型的动态肾脏MR图像配准","authors":"D. Mahapatra, Ying Sun","doi":"10.1109/ISBI.2008.4541197","DOIUrl":null,"url":null,"abstract":"In this paper we propose the use of a neurobiology-based saliency measure to improve the performance of a quantitative- qualitative measure of mutual information for rigid registration of 4D renal perfusion MR images. Our registration method assigns greater importance to more salient voxels by applying a soft thresholding function to normalized saliency values. The resulting saliency map is a better representation of what is truly visually salient than an entropy-based saliency map. Our tests on real patient datasets show that incorporating this saliency measure produces better registration results than traditional entropy-based approaches.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Registration of dynamic renal MR images using neurobiological model of saliency\",\"authors\":\"D. Mahapatra, Ying Sun\",\"doi\":\"10.1109/ISBI.2008.4541197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose the use of a neurobiology-based saliency measure to improve the performance of a quantitative- qualitative measure of mutual information for rigid registration of 4D renal perfusion MR images. Our registration method assigns greater importance to more salient voxels by applying a soft thresholding function to normalized saliency values. The resulting saliency map is a better representation of what is truly visually salient than an entropy-based saliency map. Our tests on real patient datasets show that incorporating this saliency measure produces better registration results than traditional entropy-based approaches.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

在本文中,我们提出使用基于神经生物学的显著性措施来提高定量-定性互信息措施的性能,用于4D肾灌注MR图像的刚性配准。我们的配准方法通过对标准化的显著性值应用软阈值函数来赋予更显著的体素更大的重要性。由此产生的显著性图比基于熵的显著性图更好地表示了真正的视觉显著性。我们对真实患者数据集的测试表明,结合这种显著性度量比传统的基于熵的方法产生更好的注册结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Registration of dynamic renal MR images using neurobiological model of saliency
In this paper we propose the use of a neurobiology-based saliency measure to improve the performance of a quantitative- qualitative measure of mutual information for rigid registration of 4D renal perfusion MR images. Our registration method assigns greater importance to more salient voxels by applying a soft thresholding function to normalized saliency values. The resulting saliency map is a better representation of what is truly visually salient than an entropy-based saliency map. Our tests on real patient datasets show that incorporating this saliency measure produces better registration results than traditional entropy-based approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1