通过频繁的模式挖掘来解读软件开发的故事

Nicolas Bettenburg, Andrew Begel
{"title":"通过频繁的模式挖掘来解读软件开发的故事","authors":"Nicolas Bettenburg, Andrew Begel","doi":"10.1109/ICSE.2013.6606677","DOIUrl":null,"url":null,"abstract":"Software teams record their work progress in task repositories which often require them to encode their activities in a set of edits to field values in a form-based user interface. When others read the tasks, they must decode the schema used to write the activities down. We interviewed four software teams and found out how they used the task repository fields to record their work activities. However, we also found that they had trouble interpreting task revisions that encoded for multiple activities at the same time. To assist engineers in decoding tasks, we developed a scalable method based on frequent pattern mining to identify patterns of frequently co-edited fields that each represent a conceptual work activity. We applied our method to our two years of our interviewee's task repositories and were able to abstract 83,000 field changes into just 27 patterns that cover 95% of the task revisions. We used the 27 patterns to render the teams' tasks in web-based English newsfeeds and evaluated them with the product teams. The team agreed with most of our patterns and English interpretations, but outlined a number of improvements that we will incorporate into future work.","PeriodicalId":322423,"journal":{"name":"2013 35th International Conference on Software Engineering (ICSE)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Deciphering the story of software development through frequent pattern mining\",\"authors\":\"Nicolas Bettenburg, Andrew Begel\",\"doi\":\"10.1109/ICSE.2013.6606677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software teams record their work progress in task repositories which often require them to encode their activities in a set of edits to field values in a form-based user interface. When others read the tasks, they must decode the schema used to write the activities down. We interviewed four software teams and found out how they used the task repository fields to record their work activities. However, we also found that they had trouble interpreting task revisions that encoded for multiple activities at the same time. To assist engineers in decoding tasks, we developed a scalable method based on frequent pattern mining to identify patterns of frequently co-edited fields that each represent a conceptual work activity. We applied our method to our two years of our interviewee's task repositories and were able to abstract 83,000 field changes into just 27 patterns that cover 95% of the task revisions. We used the 27 patterns to render the teams' tasks in web-based English newsfeeds and evaluated them with the product teams. The team agreed with most of our patterns and English interpretations, but outlined a number of improvements that we will incorporate into future work.\",\"PeriodicalId\":322423,\"journal\":{\"name\":\"2013 35th International Conference on Software Engineering (ICSE)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 35th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2013.6606677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 35th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2013.6606677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

软件团队在任务存储库中记录他们的工作进度,这通常要求他们在基于表单的用户界面中对字段值的一组编辑中编码他们的活动。当其他人阅读任务时,他们必须解码用于将活动写下来的模式。我们采访了四个软件团队,并发现他们如何使用任务存储库字段来记录他们的工作活动。然而,我们也发现他们在解释同时为多个活动编码的任务修订时有困难。为了帮助工程师解码任务,我们开发了一种基于频繁模式挖掘的可扩展方法,以识别频繁共同编辑的字段的模式,每个字段代表一个概念性的工作活动。我们将我们的方法应用到两年的受访者任务存储库中,并且能够将83,000个字段更改抽象为27个模式,这些模式覆盖了95%的任务修订。我们使用这27种模式在基于web的英语新闻提要中呈现团队的任务,并与产品团队一起对其进行评估。团队同意我们的大部分模式和英语解释,但概述了一些改进,我们将在未来的工作中纳入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deciphering the story of software development through frequent pattern mining
Software teams record their work progress in task repositories which often require them to encode their activities in a set of edits to field values in a form-based user interface. When others read the tasks, they must decode the schema used to write the activities down. We interviewed four software teams and found out how they used the task repository fields to record their work activities. However, we also found that they had trouble interpreting task revisions that encoded for multiple activities at the same time. To assist engineers in decoding tasks, we developed a scalable method based on frequent pattern mining to identify patterns of frequently co-edited fields that each represent a conceptual work activity. We applied our method to our two years of our interviewee's task repositories and were able to abstract 83,000 field changes into just 27 patterns that cover 95% of the task revisions. We used the 27 patterns to render the teams' tasks in web-based English newsfeeds and evaluated them with the product teams. The team agreed with most of our patterns and English interpretations, but outlined a number of improvements that we will incorporate into future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studios in software engineering education: Towards an evaluable model Not going to take this anymore: Multi-objective overtime planning for Software Engineering projects 3rd International workshop on collaborative teaching of globally distributed software development (CTGDSD 2013) TestEvol: A tool for analyzing test-suite evolution A characteristic study on failures of production distributed data-parallel programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1