基于分子探针生物传感器的结核分枝杆菌检测及基因分型

M. Berezovskaya, D. Gorbenko
{"title":"基于分子探针生物传感器的结核分枝杆菌检测及基因分型","authors":"M. Berezovskaya, D. Gorbenko","doi":"10.1117/12.2634320","DOIUrl":null,"url":null,"abstract":"Nucleic acid analysis is one of the most promising approaches in modern diagnostics, however it usually requires expensive amplification equipment. In this study, we propose and approve a method for bacterial pathogens detection and genotyping using a molecular probe-based biosensor without amplification. The sensor consists of a molecular beacon probe as a signal reporter with a fluorophore and a quencher attached to it, and two DNA strands, which have fragments complementary to the reporter and to the analyzed nucleic acid (analyte). The M. tuberculosis HigA1 gene was detected using this sensor, and a point mutation associated with antibiotic resistance was discriminated. As an additional demonstration of the applicability of the method without amplification, E.Coli 16S rRNA was detected. Amplification-free sample detection has been further tested and achieved.","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"12212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mycobacterium tuberculosis detection and genotyping using molecular probe-based biosensor\",\"authors\":\"M. Berezovskaya, D. Gorbenko\",\"doi\":\"10.1117/12.2634320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nucleic acid analysis is one of the most promising approaches in modern diagnostics, however it usually requires expensive amplification equipment. In this study, we propose and approve a method for bacterial pathogens detection and genotyping using a molecular probe-based biosensor without amplification. The sensor consists of a molecular beacon probe as a signal reporter with a fluorophore and a quencher attached to it, and two DNA strands, which have fragments complementary to the reporter and to the analyzed nucleic acid (analyte). The M. tuberculosis HigA1 gene was detected using this sensor, and a point mutation associated with antibiotic resistance was discriminated. As an additional demonstration of the applicability of the method without amplification, E.Coli 16S rRNA was detected. Amplification-free sample detection has been further tested and achieved.\",\"PeriodicalId\":145218,\"journal\":{\"name\":\"Organic Photonics + Electronics\",\"volume\":\"12212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Photonics + Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2634320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2634320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

核酸分析是现代诊断中最有前途的方法之一,但它通常需要昂贵的扩增设备。在这项研究中,我们提出并批准了一种基于分子探针的生物传感器的细菌病原体检测和基因分型方法。该传感器包括一个分子信标探针作为信号报告器,其上附有一个荧光团和一个淬灭器,以及两条DNA链,其片段与报告器和被分析的核酸(分析物)互补。利用该传感器检测结核分枝杆菌HigA1基因,并鉴定出与抗生素耐药性相关的点突变。为了进一步证明该方法无需扩增的适用性,我们检测了大肠杆菌16S rRNA。进一步测试并实现了无扩增样品检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mycobacterium tuberculosis detection and genotyping using molecular probe-based biosensor
Nucleic acid analysis is one of the most promising approaches in modern diagnostics, however it usually requires expensive amplification equipment. In this study, we propose and approve a method for bacterial pathogens detection and genotyping using a molecular probe-based biosensor without amplification. The sensor consists of a molecular beacon probe as a signal reporter with a fluorophore and a quencher attached to it, and two DNA strands, which have fragments complementary to the reporter and to the analyzed nucleic acid (analyte). The M. tuberculosis HigA1 gene was detected using this sensor, and a point mutation associated with antibiotic resistance was discriminated. As an additional demonstration of the applicability of the method without amplification, E.Coli 16S rRNA was detected. Amplification-free sample detection has been further tested and achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of amylose and tailored amylose matrices for scavenging iodide Chemiluminescent detection of nucleic acids induced by peroxidase-like targeted DNA-nanomachines (PxDm) mixed with plasmonic nanoparticles Synthesis and characterization of cesium europium chloride bromide lead-free Perovskite nanocrystals Effect of reaction temperature on CsPbBr3 perovskite quantum dots with photovoltaic applications Reduced graphene oxide (rGO)-CsSnI3 nanocomposites: A cost-effective technique to improve the structural and optical properties for optoelectronic device applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1