{"title":"基于层次特征融合的小样本缺陷识别方法","authors":"Yiping Gao, Liang Gao, Xinyu Li","doi":"10.1109/IEEM44572.2019.8978912","DOIUrl":null,"url":null,"abstract":"As one of the breakthroughs in modern manufacturing, deep learning (DL) performs large-scale network architectures and achieves some outstanding performances in vision-based defect recognition. However, most of these large-scale networks require a large sample for training, and a small sample might cause the networks overfitting and collapse. Since the defect often occurs with a low probability, it is costly to collect large-scale samples. To overcome this problem, a hierarchical feature fusion-based method is introduced for defect recognition with a small sample. The proposed method divides a pretrained VGG16 network into different blocks, and learns the hierarchical features from the low- and high- level blocks. The results are better than the other methods. This result manifests the proposed method suits problem, and the defect recognition could be deployed earlier with the proposed method.","PeriodicalId":255418,"journal":{"name":"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Hierarchical Feature Fusion-based Method for Defect Recognition with a Small Sample\",\"authors\":\"Yiping Gao, Liang Gao, Xinyu Li\",\"doi\":\"10.1109/IEEM44572.2019.8978912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the breakthroughs in modern manufacturing, deep learning (DL) performs large-scale network architectures and achieves some outstanding performances in vision-based defect recognition. However, most of these large-scale networks require a large sample for training, and a small sample might cause the networks overfitting and collapse. Since the defect often occurs with a low probability, it is costly to collect large-scale samples. To overcome this problem, a hierarchical feature fusion-based method is introduced for defect recognition with a small sample. The proposed method divides a pretrained VGG16 network into different blocks, and learns the hierarchical features from the low- and high- level blocks. The results are better than the other methods. This result manifests the proposed method suits problem, and the defect recognition could be deployed earlier with the proposed method.\",\"PeriodicalId\":255418,\"journal\":{\"name\":\"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEM44572.2019.8978912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM44572.2019.8978912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hierarchical Feature Fusion-based Method for Defect Recognition with a Small Sample
As one of the breakthroughs in modern manufacturing, deep learning (DL) performs large-scale network architectures and achieves some outstanding performances in vision-based defect recognition. However, most of these large-scale networks require a large sample for training, and a small sample might cause the networks overfitting and collapse. Since the defect often occurs with a low probability, it is costly to collect large-scale samples. To overcome this problem, a hierarchical feature fusion-based method is introduced for defect recognition with a small sample. The proposed method divides a pretrained VGG16 network into different blocks, and learns the hierarchical features from the low- and high- level blocks. The results are better than the other methods. This result manifests the proposed method suits problem, and the defect recognition could be deployed earlier with the proposed method.