样本:使用机车信号在实际环境中检测语义室内活动

Zhixian Yan, D. Chakraborty, Archan Misra, Hoyoung Jeung, K. Aberer
{"title":"样本:使用机车信号在实际环境中检测语义室内活动","authors":"Zhixian Yan, D. Chakraborty, Archan Misra, Hoyoung Jeung, K. Aberer","doi":"10.1109/ISWC.2012.22","DOIUrl":null,"url":null,"abstract":"We analyze the ability of mobile phone-generated accelerometer data to detect high-level (i.e., at the semantic level) indoor lifestyle activities, such as cooking at home and working at the workplace, in practical settings. We design a 2-Tier activity extraction framework (called SAMMPLE) for our purpose. Using this, we evaluate discriminatory power of activity structures along the dimension of statistical features and after a transformation to a sequence of individual locomotive micro-activities (e.g. sitting or standing). Our findings from 152 days of real-life behavioral traces reveal that locomotive signatures achieve an average accuracy of 77.14%, an improvement of 16.37% over directly using statistical features.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"1990 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"SAMMPLE: Detecting Semantic Indoor Activities in Practical Settings Using Locomotive Signatures\",\"authors\":\"Zhixian Yan, D. Chakraborty, Archan Misra, Hoyoung Jeung, K. Aberer\",\"doi\":\"10.1109/ISWC.2012.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the ability of mobile phone-generated accelerometer data to detect high-level (i.e., at the semantic level) indoor lifestyle activities, such as cooking at home and working at the workplace, in practical settings. We design a 2-Tier activity extraction framework (called SAMMPLE) for our purpose. Using this, we evaluate discriminatory power of activity structures along the dimension of statistical features and after a transformation to a sequence of individual locomotive micro-activities (e.g. sitting or standing). Our findings from 152 days of real-life behavioral traces reveal that locomotive signatures achieve an average accuracy of 77.14%, an improvement of 16.37% over directly using statistical features.\",\"PeriodicalId\":190627,\"journal\":{\"name\":\"2012 16th International Symposium on Wearable Computers\",\"volume\":\"1990 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 16th International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWC.2012.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2012.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

我们分析了手机生成的加速度计数据在实际环境中检测高水平(即语义层面)室内生活方式活动的能力,例如在家做饭和在工作场所工作。为此,我们设计了一个两层的活动提取框架(称为sample)。利用这一点,我们沿着统计特征的维度评估活动结构的歧视性权力,并在转换为单个机车微活动(例如坐或站)的序列之后。我们从152天的真实行为痕迹中发现,机车特征的平均准确率为77.14%,比直接使用统计特征提高了16.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAMMPLE: Detecting Semantic Indoor Activities in Practical Settings Using Locomotive Signatures
We analyze the ability of mobile phone-generated accelerometer data to detect high-level (i.e., at the semantic level) indoor lifestyle activities, such as cooking at home and working at the workplace, in practical settings. We design a 2-Tier activity extraction framework (called SAMMPLE) for our purpose. Using this, we evaluate discriminatory power of activity structures along the dimension of statistical features and after a transformation to a sequence of individual locomotive micro-activities (e.g. sitting or standing). Our findings from 152 days of real-life behavioral traces reveal that locomotive signatures achieve an average accuracy of 77.14%, an improvement of 16.37% over directly using statistical features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tongue Mounted Interface for Digitally Actuating the Sense of Taste Energy-Efficient Continuous Activity Recognition on Mobile Phones: An Activity-Adaptive Approach Recognizing Daily Life Context Using Web-Collected Audio Data Toe Input Using a Mobile Projector and Kinect Sensor Energy-Efficient Activity Recognition Using Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1