Zhixian Yan, D. Chakraborty, Archan Misra, Hoyoung Jeung, K. Aberer
{"title":"样本:使用机车信号在实际环境中检测语义室内活动","authors":"Zhixian Yan, D. Chakraborty, Archan Misra, Hoyoung Jeung, K. Aberer","doi":"10.1109/ISWC.2012.22","DOIUrl":null,"url":null,"abstract":"We analyze the ability of mobile phone-generated accelerometer data to detect high-level (i.e., at the semantic level) indoor lifestyle activities, such as cooking at home and working at the workplace, in practical settings. We design a 2-Tier activity extraction framework (called SAMMPLE) for our purpose. Using this, we evaluate discriminatory power of activity structures along the dimension of statistical features and after a transformation to a sequence of individual locomotive micro-activities (e.g. sitting or standing). Our findings from 152 days of real-life behavioral traces reveal that locomotive signatures achieve an average accuracy of 77.14%, an improvement of 16.37% over directly using statistical features.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"1990 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"SAMMPLE: Detecting Semantic Indoor Activities in Practical Settings Using Locomotive Signatures\",\"authors\":\"Zhixian Yan, D. Chakraborty, Archan Misra, Hoyoung Jeung, K. Aberer\",\"doi\":\"10.1109/ISWC.2012.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the ability of mobile phone-generated accelerometer data to detect high-level (i.e., at the semantic level) indoor lifestyle activities, such as cooking at home and working at the workplace, in practical settings. We design a 2-Tier activity extraction framework (called SAMMPLE) for our purpose. Using this, we evaluate discriminatory power of activity structures along the dimension of statistical features and after a transformation to a sequence of individual locomotive micro-activities (e.g. sitting or standing). Our findings from 152 days of real-life behavioral traces reveal that locomotive signatures achieve an average accuracy of 77.14%, an improvement of 16.37% over directly using statistical features.\",\"PeriodicalId\":190627,\"journal\":{\"name\":\"2012 16th International Symposium on Wearable Computers\",\"volume\":\"1990 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 16th International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWC.2012.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2012.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SAMMPLE: Detecting Semantic Indoor Activities in Practical Settings Using Locomotive Signatures
We analyze the ability of mobile phone-generated accelerometer data to detect high-level (i.e., at the semantic level) indoor lifestyle activities, such as cooking at home and working at the workplace, in practical settings. We design a 2-Tier activity extraction framework (called SAMMPLE) for our purpose. Using this, we evaluate discriminatory power of activity structures along the dimension of statistical features and after a transformation to a sequence of individual locomotive micro-activities (e.g. sitting or standing). Our findings from 152 days of real-life behavioral traces reveal that locomotive signatures achieve an average accuracy of 77.14%, an improvement of 16.37% over directly using statistical features.