{"title":"光学制造过程控制","authors":"O. Faehnle","doi":"10.1117/12.2191881","DOIUrl":null,"url":null,"abstract":"Predictable and stable fabrication processes are essential for reliable cost and quality management in optical fabrication technology. This paper reports on strategies to generate and control optimum sets of process parameters for e.g. sub-aperture polishing of small optics (featuring clear apertures smaller than 2 mm). Emphasis is placed to distinguish between machine and process optimization demonstrating, that e.g. it is possible setting up ductile mode grinding process by other means than controlling critical depth of cut. Finally, a recently developed in situ testing technique is applied to monitor surface quality on-machine while abrasively working the surface under test enabling an on-line optimization of polishing processes eventually minimizing polishing time and fabrication cost.","PeriodicalId":212434,"journal":{"name":"SPIE Optical Systems Design","volume":"9628 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process control in optical fabrication\",\"authors\":\"O. Faehnle\",\"doi\":\"10.1117/12.2191881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictable and stable fabrication processes are essential for reliable cost and quality management in optical fabrication technology. This paper reports on strategies to generate and control optimum sets of process parameters for e.g. sub-aperture polishing of small optics (featuring clear apertures smaller than 2 mm). Emphasis is placed to distinguish between machine and process optimization demonstrating, that e.g. it is possible setting up ductile mode grinding process by other means than controlling critical depth of cut. Finally, a recently developed in situ testing technique is applied to monitor surface quality on-machine while abrasively working the surface under test enabling an on-line optimization of polishing processes eventually minimizing polishing time and fabrication cost.\",\"PeriodicalId\":212434,\"journal\":{\"name\":\"SPIE Optical Systems Design\",\"volume\":\"9628 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optical Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2191881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2191881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictable and stable fabrication processes are essential for reliable cost and quality management in optical fabrication technology. This paper reports on strategies to generate and control optimum sets of process parameters for e.g. sub-aperture polishing of small optics (featuring clear apertures smaller than 2 mm). Emphasis is placed to distinguish between machine and process optimization demonstrating, that e.g. it is possible setting up ductile mode grinding process by other means than controlling critical depth of cut. Finally, a recently developed in situ testing technique is applied to monitor surface quality on-machine while abrasively working the surface under test enabling an on-line optimization of polishing processes eventually minimizing polishing time and fabrication cost.