Andreas Sembrant, Trevor E. Carlson, Erik Hagersten, D. Black-Schaffer
{"title":"海报:把G放回GPU/CPU系统研究","authors":"Andreas Sembrant, Trevor E. Carlson, Erik Hagersten, D. Black-Schaffer","doi":"10.1109/PACT.2017.60","DOIUrl":null,"url":null,"abstract":"Modern SoCs contain several CPU cores and many GPU cores to execute both general purpose and highly-parallel graphics workloads. In many SoCs, more area is dedicated to graphics than to general purpose compute. Despite this, the micro-architecture research community primarily focuses on GPGPU and CPU-only research, and not on graphics (the primary workload for many SoCs). The main reason for this is the lack of efficient tools and simulators for modern graphics applications.This work focuses on the GPU's memory traffic generated by graphics. We describe a new graphics tracing framework and use it to both study graphics applications' memory behavior as well as how CPUs and GPUs affect system performance. Our results show that graphics applications exhibit a wide range of memory behavior between applications and across time, and slows down co-running SPEC applications by 59% on average.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POSTER: Putting the G back into GPU/CPU Systems Research\",\"authors\":\"Andreas Sembrant, Trevor E. Carlson, Erik Hagersten, D. Black-Schaffer\",\"doi\":\"10.1109/PACT.2017.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern SoCs contain several CPU cores and many GPU cores to execute both general purpose and highly-parallel graphics workloads. In many SoCs, more area is dedicated to graphics than to general purpose compute. Despite this, the micro-architecture research community primarily focuses on GPGPU and CPU-only research, and not on graphics (the primary workload for many SoCs). The main reason for this is the lack of efficient tools and simulators for modern graphics applications.This work focuses on the GPU's memory traffic generated by graphics. We describe a new graphics tracing framework and use it to both study graphics applications' memory behavior as well as how CPUs and GPUs affect system performance. Our results show that graphics applications exhibit a wide range of memory behavior between applications and across time, and slows down co-running SPEC applications by 59% on average.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
POSTER: Putting the G back into GPU/CPU Systems Research
Modern SoCs contain several CPU cores and many GPU cores to execute both general purpose and highly-parallel graphics workloads. In many SoCs, more area is dedicated to graphics than to general purpose compute. Despite this, the micro-architecture research community primarily focuses on GPGPU and CPU-only research, and not on graphics (the primary workload for many SoCs). The main reason for this is the lack of efficient tools and simulators for modern graphics applications.This work focuses on the GPU's memory traffic generated by graphics. We describe a new graphics tracing framework and use it to both study graphics applications' memory behavior as well as how CPUs and GPUs affect system performance. Our results show that graphics applications exhibit a wide range of memory behavior between applications and across time, and slows down co-running SPEC applications by 59% on average.