海报:把G放回GPU/CPU系统研究

Andreas Sembrant, Trevor E. Carlson, Erik Hagersten, D. Black-Schaffer
{"title":"海报:把G放回GPU/CPU系统研究","authors":"Andreas Sembrant, Trevor E. Carlson, Erik Hagersten, D. Black-Schaffer","doi":"10.1109/PACT.2017.60","DOIUrl":null,"url":null,"abstract":"Modern SoCs contain several CPU cores and many GPU cores to execute both general purpose and highly-parallel graphics workloads. In many SoCs, more area is dedicated to graphics than to general purpose compute. Despite this, the micro-architecture research community primarily focuses on GPGPU and CPU-only research, and not on graphics (the primary workload for many SoCs). The main reason for this is the lack of efficient tools and simulators for modern graphics applications.This work focuses on the GPU's memory traffic generated by graphics. We describe a new graphics tracing framework and use it to both study graphics applications' memory behavior as well as how CPUs and GPUs affect system performance. Our results show that graphics applications exhibit a wide range of memory behavior between applications and across time, and slows down co-running SPEC applications by 59% on average.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POSTER: Putting the G back into GPU/CPU Systems Research\",\"authors\":\"Andreas Sembrant, Trevor E. Carlson, Erik Hagersten, D. Black-Schaffer\",\"doi\":\"10.1109/PACT.2017.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern SoCs contain several CPU cores and many GPU cores to execute both general purpose and highly-parallel graphics workloads. In many SoCs, more area is dedicated to graphics than to general purpose compute. Despite this, the micro-architecture research community primarily focuses on GPGPU and CPU-only research, and not on graphics (the primary workload for many SoCs). The main reason for this is the lack of efficient tools and simulators for modern graphics applications.This work focuses on the GPU's memory traffic generated by graphics. We describe a new graphics tracing framework and use it to both study graphics applications' memory behavior as well as how CPUs and GPUs affect system performance. Our results show that graphics applications exhibit a wide range of memory behavior between applications and across time, and slows down co-running SPEC applications by 59% on average.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代soc包含几个CPU内核和许多GPU内核来执行通用和高度并行的图形工作负载。在许多soc中,专用于图形的区域比专用于通用计算的区域要多。尽管如此,微体系结构研究社区主要关注GPGPU和cpu的研究,而不是图形(许多soc的主要工作负载)。造成这种情况的主要原因是现代图形应用程序缺乏有效的工具和模拟器。这项工作的重点是图形产生的GPU内存流量。我们描述了一个新的图形跟踪框架,并使用它来研究图形应用程序的内存行为以及cpu和gpu如何影响系统性能。我们的结果表明,图形应用程序在应用程序之间和不同时间表现出广泛的内存行为,并使共同运行的SPEC应用程序平均降低59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POSTER: Putting the G back into GPU/CPU Systems Research
Modern SoCs contain several CPU cores and many GPU cores to execute both general purpose and highly-parallel graphics workloads. In many SoCs, more area is dedicated to graphics than to general purpose compute. Despite this, the micro-architecture research community primarily focuses on GPGPU and CPU-only research, and not on graphics (the primary workload for many SoCs). The main reason for this is the lack of efficient tools and simulators for modern graphics applications.This work focuses on the GPU's memory traffic generated by graphics. We describe a new graphics tracing framework and use it to both study graphics applications' memory behavior as well as how CPUs and GPUs affect system performance. Our results show that graphics applications exhibit a wide range of memory behavior between applications and across time, and slows down co-running SPEC applications by 59% on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSTER: Exploiting Approximations for Energy/Quality Tradeoffs in Service-Based Applications End-to-End Deep Learning of Optimization Heuristics Large Scale Data Clustering Using Memristive k-Median Computation DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing POSTER: Improving Datacenter Efficiency Through Partitioning-Aware Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1