基于RIC-LBP特征提取的数字图像拼接检测

Vikas Srivastavaven, S. Yadav
{"title":"基于RIC-LBP特征提取的数字图像拼接检测","authors":"Vikas Srivastavaven, S. Yadav","doi":"10.1109/PDGC50313.2020.9315812","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed rotation invariant co-occurrence among adjacent local binary pattern (RIC-LBP) based feature extraction technique for forgery detection. We use Standard Deviation filter (STD) to highlights the image pixel variation, RIC-LBP operator for feature extraction, and Logistic Regression Classifiers (LRC) for forgery detection to know the internal statistics of the image. LRC is a machine learning technique so directly used as a classifier on the entire data set. So it differs from SVM classifier. In this proposed work, we used two datasets, Columbia and DSO-1, to evaluate our proposed work. It gives better results compare to various state of the art.","PeriodicalId":347216,"journal":{"name":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Digital Image splicing Detection Using RIC-LBP Feature Extraction Technique\",\"authors\":\"Vikas Srivastavaven, S. Yadav\",\"doi\":\"10.1109/PDGC50313.2020.9315812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed rotation invariant co-occurrence among adjacent local binary pattern (RIC-LBP) based feature extraction technique for forgery detection. We use Standard Deviation filter (STD) to highlights the image pixel variation, RIC-LBP operator for feature extraction, and Logistic Regression Classifiers (LRC) for forgery detection to know the internal statistics of the image. LRC is a machine learning technique so directly used as a classifier on the entire data set. So it differs from SVM classifier. In this proposed work, we used two datasets, Columbia and DSO-1, to evaluate our proposed work. It gives better results compare to various state of the art.\",\"PeriodicalId\":347216,\"journal\":{\"name\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC50313.2020.9315812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC50313.2020.9315812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于相邻局部二值模式(RIC-LBP)的旋转不变共现特征提取技术,用于伪造检测。我们使用标准偏差过滤器(STD)来突出图像像素的变化,使用RIC-LBP算子进行特征提取,使用逻辑回归分类器(LRC)进行伪造检测,以了解图像的内部统计信息。LRC是一种机器学习技术,可以直接用作整个数据集的分类器。所以它不同于SVM分类器。在这项工作中,我们使用了哥伦比亚和DSO-1两个数据集来评估我们的工作。它提供了更好的结果相比,各种状态的艺术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital Image splicing Detection Using RIC-LBP Feature Extraction Technique
In this paper, we proposed rotation invariant co-occurrence among adjacent local binary pattern (RIC-LBP) based feature extraction technique for forgery detection. We use Standard Deviation filter (STD) to highlights the image pixel variation, RIC-LBP operator for feature extraction, and Logistic Regression Classifiers (LRC) for forgery detection to know the internal statistics of the image. LRC is a machine learning technique so directly used as a classifier on the entire data set. So it differs from SVM classifier. In this proposed work, we used two datasets, Columbia and DSO-1, to evaluate our proposed work. It gives better results compare to various state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Data Analysis of Various Terrorism Activities Using Big Data Approaches on Global Terrorism Database A Convolutional Neural Network Approach for The Diagnosis of Breast Cancer Color Fading: Variation of Colorimetric Parameters with Spectral Reflectance Automatic Rumour Detection Model on Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1