过滤误导性维修日志标签,改进预测性维护模型

Pablo Del Moral, Sławomir Nowaczyk, Sepideh Pashami
{"title":"过滤误导性维修日志标签,改进预测性维护模型","authors":"Pablo Del Moral, Sławomir Nowaczyk, Sepideh Pashami","doi":"10.36001/phme.2022.v7i1.3360","DOIUrl":null,"url":null,"abstract":"One of the main challenges for predictive maintenance in real applications is the quality of the data, especially the labels. In this paper, we propose a methodology to filter out the misleading labels that harm the performance of Machine Learning models. Ideally, predictive maintenance would be based on the information of when a fault has occurred in a machine and what specific type of fault it was. Then, we could train machine learning models to identify the symptoms of such fault before it leads to a breakdown. However, in many industrial applications, this information is not available. Instead, we approximate it using a log of component replacements, usually coming from the sales or maintenance departments. The repair history provides reliable labels for fault prediction models only if the replaced component was indeed faulty, with symptoms captured by collected data, and it was going to lead to a breakdown.\nHowever, very often, at least for complex equipment, this assumption does not hold. Models trained using unreliable labels will then, necessarily, fail. We demonstrate that filtering misleading labels leads to improved results. Our central claim is that the same fault, happening several times, should have similar symptoms in the data; thus, we can train a model to predict them. On the contrary, replacements of the same component that do not exhibit similar symptoms will be confusing and harm the ML models. Therefore, we aim to filter the maintenance operations, keeping only those that can be used to predict each other. Suppose we can train a successful model using the data before a component replacement to predict another component replacement. In that case, those maintenance operations must be motivated by the same, or a very similar, type of fault.\nWe test this approach on a real scenario using data from a fleet of sterilizers deployed in hospitals. The data includes sensor readings from the machines describing their operations and the service logs indicating the replacement of components when the manufacturing company performs the service. Since sterilizers are complex machines consisting of many components and systems interacting with each other, there is the possibility of faults happening simultaneously.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filtering Misleading Repair Log Labels to Improve Predictive Maintenance Models\",\"authors\":\"Pablo Del Moral, Sławomir Nowaczyk, Sepideh Pashami\",\"doi\":\"10.36001/phme.2022.v7i1.3360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges for predictive maintenance in real applications is the quality of the data, especially the labels. In this paper, we propose a methodology to filter out the misleading labels that harm the performance of Machine Learning models. Ideally, predictive maintenance would be based on the information of when a fault has occurred in a machine and what specific type of fault it was. Then, we could train machine learning models to identify the symptoms of such fault before it leads to a breakdown. However, in many industrial applications, this information is not available. Instead, we approximate it using a log of component replacements, usually coming from the sales or maintenance departments. The repair history provides reliable labels for fault prediction models only if the replaced component was indeed faulty, with symptoms captured by collected data, and it was going to lead to a breakdown.\\nHowever, very often, at least for complex equipment, this assumption does not hold. Models trained using unreliable labels will then, necessarily, fail. We demonstrate that filtering misleading labels leads to improved results. Our central claim is that the same fault, happening several times, should have similar symptoms in the data; thus, we can train a model to predict them. On the contrary, replacements of the same component that do not exhibit similar symptoms will be confusing and harm the ML models. Therefore, we aim to filter the maintenance operations, keeping only those that can be used to predict each other. Suppose we can train a successful model using the data before a component replacement to predict another component replacement. In that case, those maintenance operations must be motivated by the same, or a very similar, type of fault.\\nWe test this approach on a real scenario using data from a fleet of sterilizers deployed in hospitals. The data includes sensor readings from the machines describing their operations and the service logs indicating the replacement of components when the manufacturing company performs the service. Since sterilizers are complex machines consisting of many components and systems interacting with each other, there is the possibility of faults happening simultaneously.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在实际应用中,预测性维护的主要挑战之一是数据的质量,特别是标签的质量。在本文中,我们提出了一种方法来过滤掉损害机器学习模型性能的误导性标签。理想情况下,预测性维护将基于机器何时发生故障以及故障的具体类型的信息。然后,我们可以训练机器学习模型,在故障导致故障之前识别故障的症状。然而,在许多工业应用中,这些信息是不可用的。相反,我们使用通常来自销售或维护部门的部件更换日志来近似计算。只有当被替换的组件确实存在故障,并且收集的数据捕获了故障症状,并且将导致故障时,维修历史记录才会为故障预测模型提供可靠的标签。然而,通常情况下,至少对于复杂的设备,这种假设并不成立。使用不可靠标签训练的模型必然会失败。我们证明,过滤误导性标签可以改善结果。我们的核心主张是,同一故障,发生多次,在数据中应该有相似的症状;因此,我们可以训练一个模型来预测它们。相反,更换没有表现出类似症状的相同组件将会混淆并损害ML模型。因此,我们的目标是过滤维护操作,只保留那些可以用来相互预测的操作。假设我们可以使用一个部件更换前的数据训练一个成功的模型来预测另一个部件的更换。在这种情况下,那些维护操作必须是由相同或非常相似的故障类型驱动的。我们在一个真实的场景中测试了这种方法,使用的数据来自部署在医院的一系列灭菌器。这些数据包括来自机器的传感器读数,它们描述了机器的运行情况,以及在制造公司执行服务时指示更换组件的服务日志。由于灭菌器是由许多部件和相互作用的系统组成的复杂机器,因此存在同时发生故障的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Filtering Misleading Repair Log Labels to Improve Predictive Maintenance Models
One of the main challenges for predictive maintenance in real applications is the quality of the data, especially the labels. In this paper, we propose a methodology to filter out the misleading labels that harm the performance of Machine Learning models. Ideally, predictive maintenance would be based on the information of when a fault has occurred in a machine and what specific type of fault it was. Then, we could train machine learning models to identify the symptoms of such fault before it leads to a breakdown. However, in many industrial applications, this information is not available. Instead, we approximate it using a log of component replacements, usually coming from the sales or maintenance departments. The repair history provides reliable labels for fault prediction models only if the replaced component was indeed faulty, with symptoms captured by collected data, and it was going to lead to a breakdown. However, very often, at least for complex equipment, this assumption does not hold. Models trained using unreliable labels will then, necessarily, fail. We demonstrate that filtering misleading labels leads to improved results. Our central claim is that the same fault, happening several times, should have similar symptoms in the data; thus, we can train a model to predict them. On the contrary, replacements of the same component that do not exhibit similar symptoms will be confusing and harm the ML models. Therefore, we aim to filter the maintenance operations, keeping only those that can be used to predict each other. Suppose we can train a successful model using the data before a component replacement to predict another component replacement. In that case, those maintenance operations must be motivated by the same, or a very similar, type of fault. We test this approach on a real scenario using data from a fleet of sterilizers deployed in hospitals. The data includes sensor readings from the machines describing their operations and the service logs indicating the replacement of components when the manufacturing company performs the service. Since sterilizers are complex machines consisting of many components and systems interacting with each other, there is the possibility of faults happening simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Certainty Groups: A Practical Approach to Distinguish Confidence Levels in Neural Networks Domain Knowledge Informed Unsupervised Fault Detection for Rolling Element Bearings Novel Methodology for Health Assessment in Printed Circuit Boards On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1