enBudget: H.264/MPEG-4 AVC视频编码器中用于能量感知运动估计的运行时自适应预测能量预算方案

M. Shafique, L. Bauer, J. Henkel
{"title":"enBudget: H.264/MPEG-4 AVC视频编码器中用于能量感知运动估计的运行时自适应预测能量预算方案","authors":"M. Shafique, L. Bauer, J. Henkel","doi":"10.1109/DATE.2010.5457093","DOIUrl":null,"url":null,"abstract":"The limited energy resources in portable multimedia devices require the reduction of encoding complexity. The complex Motion Estimation (ME) scheme of H.264/MPEG-4 AVC accounts for a major part of the encoder energy. In this paper we present a Run-Time Adaptive Predictive Energy Budgeting (enBudget) scheme for energy-aware ME that predicts the energy budget for different video frames and different Macroblocks (MBs) in an adaptive manner considering the run-time changing scenarios of available energy, video frame characteristics, and user-defined coding constraints while keeping a good video quality. It assigns different Energy-Quality Classes to different video frames and fine-tunes at MB level depending upon the predictive energy quota in order to cope with above-mentioned run-time unpredictable scenarios. Compared to UMHexagonS, EPZS, and FastME, our enBudget scheme for energy-aware ME achieves an energy saving of up to 93%, 90%, 88% (average 88%, 77%, 66%), respectively. It suffers from an average Peak Signal to Noise Ratio (PSNR) loss of 0.29 dB compared to Full Search. We also demonstrate that enBudget is equally beneficial to various other state-of-the-art fast adaptive MEs (e.g.). We have evaluated our scheme for ASIC and various FPGAs.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"enBudget: A Run-Time Adaptive Predictive Energy-Budgeting scheme for energy-aware Motion Estimation in H.264/MPEG-4 AVC video encoder\",\"authors\":\"M. Shafique, L. Bauer, J. Henkel\",\"doi\":\"10.1109/DATE.2010.5457093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limited energy resources in portable multimedia devices require the reduction of encoding complexity. The complex Motion Estimation (ME) scheme of H.264/MPEG-4 AVC accounts for a major part of the encoder energy. In this paper we present a Run-Time Adaptive Predictive Energy Budgeting (enBudget) scheme for energy-aware ME that predicts the energy budget for different video frames and different Macroblocks (MBs) in an adaptive manner considering the run-time changing scenarios of available energy, video frame characteristics, and user-defined coding constraints while keeping a good video quality. It assigns different Energy-Quality Classes to different video frames and fine-tunes at MB level depending upon the predictive energy quota in order to cope with above-mentioned run-time unpredictable scenarios. Compared to UMHexagonS, EPZS, and FastME, our enBudget scheme for energy-aware ME achieves an energy saving of up to 93%, 90%, 88% (average 88%, 77%, 66%), respectively. It suffers from an average Peak Signal to Noise Ratio (PSNR) loss of 0.29 dB compared to Full Search. We also demonstrate that enBudget is equally beneficial to various other state-of-the-art fast adaptive MEs (e.g.). We have evaluated our scheme for ASIC and various FPGAs.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

便携式多媒体设备有限的能量资源要求降低编码复杂度。H.264/MPEG-4 AVC的复杂运动估计(complex Motion Estimation, ME)方案占了编码器能量的很大一部分。在本文中,我们提出了一种运行时自适应预测能量预算(enBudget)方案,该方案在保持良好视频质量的同时,考虑到可用能量的运行时变化场景、视频帧特征和用户自定义编码约束,以自适应的方式预测不同视频帧和不同宏块(mb)的能量预算。为了应对上述运行时不可预测的场景,它根据预测的能量配额为不同的视频帧分配不同的能量质量类,并在MB级别进行微调。与umhexagon、EPZS和FastME相比,我们的enBudget节能方案节能高达93%、90%、88%(平均分别为88%、77%和66%)。与全搜索相比,它的平均峰值信噪比(PSNR)损失为0.29 dB。我们还证明,enBudget同样有利于各种其他最先进的快速自适应MEs(例如)。我们已经在ASIC和各种fpga上评估了我们的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
enBudget: A Run-Time Adaptive Predictive Energy-Budgeting scheme for energy-aware Motion Estimation in H.264/MPEG-4 AVC video encoder
The limited energy resources in portable multimedia devices require the reduction of encoding complexity. The complex Motion Estimation (ME) scheme of H.264/MPEG-4 AVC accounts for a major part of the encoder energy. In this paper we present a Run-Time Adaptive Predictive Energy Budgeting (enBudget) scheme for energy-aware ME that predicts the energy budget for different video frames and different Macroblocks (MBs) in an adaptive manner considering the run-time changing scenarios of available energy, video frame characteristics, and user-defined coding constraints while keeping a good video quality. It assigns different Energy-Quality Classes to different video frames and fine-tunes at MB level depending upon the predictive energy quota in order to cope with above-mentioned run-time unpredictable scenarios. Compared to UMHexagonS, EPZS, and FastME, our enBudget scheme for energy-aware ME achieves an energy saving of up to 93%, 90%, 88% (average 88%, 77%, 66%), respectively. It suffers from an average Peak Signal to Noise Ratio (PSNR) loss of 0.29 dB compared to Full Search. We also demonstrate that enBudget is equally beneficial to various other state-of-the-art fast adaptive MEs (e.g.). We have evaluated our scheme for ASIC and various FPGAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High temperature polymer capacitors for aerospace applications Control network generator for latency insensitive designs Low-complexity high throughput VLSI architecture of soft-output ML MIMO detector Energy-efficient real-time task scheduling with temperature-dependent leakage A GPU based implementation of Center-Surround Distribution Distance for feature extraction and matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1