在arm到x86的动态二进制转换中利用非对称SIMD寄存器配置

Yu-Ping Liu, Ding-Yong Hong, Jan-Jan Wu, Sheng-Yu Fu, W. Hsu
{"title":"在arm到x86的动态二进制转换中利用非对称SIMD寄存器配置","authors":"Yu-Ping Liu, Ding-Yong Hong, Jan-Jan Wu, Sheng-Yu Fu, W. Hsu","doi":"10.1109/PACT.2017.15","DOIUrl":null,"url":null,"abstract":"Processor manufacturers have adopted SIMD for decades because of its superior performance and power efficiency. The configurations of SIMD registers (i.e., the number and width) have evolved and diverged rapidly through various ISA extensions on different architectures. However, migrating legacy or proprietary applications optimized for one guest ISA to another host ISA that has fewer but longer SIMD registers through binary translation raises the issues of asymmetric SIMD register configurations. To date, these issues have been overlooked. As a result, only a small fraction of the potential performance gain is realized due to underutilization of the host's SIMD parallelism and register capacity.In this paper, we present a novel dynamic binary translation technique called spill-aware SLP (saSLP), which combines short ARMv8 NEON instructions and registers in the guest binary loops to fully utilize the x86 AVX host's parallelism as well as minimize register spilling. Our experiment results show that saSLP improves the performance by 1.6X (2.3X) across a number of benchmarks, and reduces spilling by 97% (99%) for ARMv8 NEON to x86 AVX2 (AVX-512) translation.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exploiting Asymmetric SIMD Register Configurations in ARM-to-x86 Dynamic Binary Translation\",\"authors\":\"Yu-Ping Liu, Ding-Yong Hong, Jan-Jan Wu, Sheng-Yu Fu, W. Hsu\",\"doi\":\"10.1109/PACT.2017.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processor manufacturers have adopted SIMD for decades because of its superior performance and power efficiency. The configurations of SIMD registers (i.e., the number and width) have evolved and diverged rapidly through various ISA extensions on different architectures. However, migrating legacy or proprietary applications optimized for one guest ISA to another host ISA that has fewer but longer SIMD registers through binary translation raises the issues of asymmetric SIMD register configurations. To date, these issues have been overlooked. As a result, only a small fraction of the potential performance gain is realized due to underutilization of the host's SIMD parallelism and register capacity.In this paper, we present a novel dynamic binary translation technique called spill-aware SLP (saSLP), which combines short ARMv8 NEON instructions and registers in the guest binary loops to fully utilize the x86 AVX host's parallelism as well as minimize register spilling. Our experiment results show that saSLP improves the performance by 1.6X (2.3X) across a number of benchmarks, and reduces spilling by 97% (99%) for ARMv8 NEON to x86 AVX2 (AVX-512) translation.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

处理器制造商几十年来一直采用SIMD,因为它具有卓越的性能和功率效率。SIMD寄存器的配置(即数量和宽度)通过不同架构上的各种ISA扩展而迅速发展和分化。但是,通过二进制转换将针对一个来宾ISA优化的遗留或专有应用程序迁移到具有更少但更长的SIMD寄存器的另一个主机ISA,会引起SIMD寄存器配置不对称的问题。迄今为止,这些问题一直被忽视。因此,由于未充分利用主机的SIMD并行性和寄存器容量,只实现了一小部分潜在的性能增益。在本文中,我们提出了一种新的动态二进制翻译技术,称为溢出感知SLP (saSLP),它结合了短ARMv8 NEON指令和来宾二进制循环中的寄存器,以充分利用x86 AVX主机的并行性,并最大限度地减少寄存器溢出。我们的实验结果表明,saSLP在许多基准测试中将性能提高了1.6倍(2.3倍),并且在ARMv8 NEON到x86 AVX2 (AVX-512)的转换中减少了97%(99%)的溢出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Asymmetric SIMD Register Configurations in ARM-to-x86 Dynamic Binary Translation
Processor manufacturers have adopted SIMD for decades because of its superior performance and power efficiency. The configurations of SIMD registers (i.e., the number and width) have evolved and diverged rapidly through various ISA extensions on different architectures. However, migrating legacy or proprietary applications optimized for one guest ISA to another host ISA that has fewer but longer SIMD registers through binary translation raises the issues of asymmetric SIMD register configurations. To date, these issues have been overlooked. As a result, only a small fraction of the potential performance gain is realized due to underutilization of the host's SIMD parallelism and register capacity.In this paper, we present a novel dynamic binary translation technique called spill-aware SLP (saSLP), which combines short ARMv8 NEON instructions and registers in the guest binary loops to fully utilize the x86 AVX host's parallelism as well as minimize register spilling. Our experiment results show that saSLP improves the performance by 1.6X (2.3X) across a number of benchmarks, and reduces spilling by 97% (99%) for ARMv8 NEON to x86 AVX2 (AVX-512) translation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSTER: Exploiting Approximations for Energy/Quality Tradeoffs in Service-Based Applications End-to-End Deep Learning of Optimization Heuristics Large Scale Data Clustering Using Memristive k-Median Computation DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing POSTER: Improving Datacenter Efficiency Through Partitioning-Aware Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1