基于Manifest信息的Android恶意家族检测

Yingmin Zhang, Chao Feng, Lianfeng Huang, Chaolin Ye, Le Weng
{"title":"基于Manifest信息的Android恶意家族检测","authors":"Yingmin Zhang, Chao Feng, Lianfeng Huang, Chaolin Ye, Le Weng","doi":"10.1109/ICCSE49874.2020.9201835","DOIUrl":null,"url":null,"abstract":"The current number of Android malicious applications is growing rapidly, which brings great troubles and losses to mobile phone users. Therefore, we propose a lightweight and efficient method for Android malicious family detection. The method uses DREBIN's Android malicious application dataset to build a detection model that using the application manifest information and machine learning algorithms. Through the training and testing of 10 types of Android malicious family samples, it is found that the detection model has the characteristics of low complexity and high classification accuracy, which can detect the Android malicious family very well and effectively protect the security of user mobile phones.","PeriodicalId":350703,"journal":{"name":"2020 15th International Conference on Computer Science & Education (ICCSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection of Android Malicious Family Based on Manifest Information\",\"authors\":\"Yingmin Zhang, Chao Feng, Lianfeng Huang, Chaolin Ye, Le Weng\",\"doi\":\"10.1109/ICCSE49874.2020.9201835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current number of Android malicious applications is growing rapidly, which brings great troubles and losses to mobile phone users. Therefore, we propose a lightweight and efficient method for Android malicious family detection. The method uses DREBIN's Android malicious application dataset to build a detection model that using the application manifest information and machine learning algorithms. Through the training and testing of 10 types of Android malicious family samples, it is found that the detection model has the characteristics of low complexity and high classification accuracy, which can detect the Android malicious family very well and effectively protect the security of user mobile phones.\",\"PeriodicalId\":350703,\"journal\":{\"name\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE49874.2020.9201835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE49874.2020.9201835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当前Android恶意应用数量快速增长,给手机用户带来了极大的困扰和损失。因此,我们提出了一种轻量级、高效的Android恶意家族检测方法。该方法利用DREBIN的Android恶意应用数据集,利用应用清单信息和机器学习算法构建检测模型。通过对10类Android恶意家族样本的训练和测试,发现该检测模型具有复杂度低、分类准确率高的特点,能够很好地检测出Android恶意家族,有效保护用户手机的安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Android Malicious Family Based on Manifest Information
The current number of Android malicious applications is growing rapidly, which brings great troubles and losses to mobile phone users. Therefore, we propose a lightweight and efficient method for Android malicious family detection. The method uses DREBIN's Android malicious application dataset to build a detection model that using the application manifest information and machine learning algorithms. Through the training and testing of 10 types of Android malicious family samples, it is found that the detection model has the characteristics of low complexity and high classification accuracy, which can detect the Android malicious family very well and effectively protect the security of user mobile phones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction of the new Operating System Kernel Internals for the New Metrics for the Performance Prediction on the Clouds Abnormal Event Detection in Video Based on Sparse Representation The Mechanism of Intelligent Technology Reforming Education Based on the Perspective of Embodied Cognitive Theory* Multi-integrated Reform for the Course of Data Structure Intelligent Distribution Platform of Network Shared Resources Based on Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1