股票市场上谁是赢家,谁是输家?风险偏好和时机很重要

Q1 Economics, Econometrics and Finance Intelligent Systems in Accounting, Finance and Management Pub Date : 2021-06-03 DOI:10.1002/isaf.1493
Iryna Veryzhenko
{"title":"股票市场上谁是赢家,谁是输家?风险偏好和时机很重要","authors":"Iryna Veryzhenko","doi":"10.1002/isaf.1493","DOIUrl":null,"url":null,"abstract":"<p>This paper uses an agent-based multi-asset model to examine the effect of risk preferences and optimal rebalancing frequency on performance measures while tracking profit and risk-adjusted return. We focus on the evolution of portfolios managed by heterogeneous mean-variance optimizers with a quadratic utility function under different market conditions. We show that patient and risk-averse agents are able to outperform aggressive risk-takers in the long-run. Our findings also suggest that the trading frequency determined by the optimal tolerance for the deviation from portfolio targets should be derived from a tradeoff between rebalancing benefits and rebalancing costs. In a relatively calm market, the absolute range of 6% to 8% and the complete-way back rebalancing technique outperforms others. During particular turbulent periods, however, none of the existing rebalancing techniques improves tax-adjusted profits and risk-adjusted returns simultaneously.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"28 2","pages":"143-155"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1493","citationCount":"1","resultStr":"{\"title\":\"Who gains and who loses on stock markets? Risk preferences and timing matter\",\"authors\":\"Iryna Veryzhenko\",\"doi\":\"10.1002/isaf.1493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper uses an agent-based multi-asset model to examine the effect of risk preferences and optimal rebalancing frequency on performance measures while tracking profit and risk-adjusted return. We focus on the evolution of portfolios managed by heterogeneous mean-variance optimizers with a quadratic utility function under different market conditions. We show that patient and risk-averse agents are able to outperform aggressive risk-takers in the long-run. Our findings also suggest that the trading frequency determined by the optimal tolerance for the deviation from portfolio targets should be derived from a tradeoff between rebalancing benefits and rebalancing costs. In a relatively calm market, the absolute range of 6% to 8% and the complete-way back rebalancing technique outperforms others. During particular turbulent periods, however, none of the existing rebalancing techniques improves tax-adjusted profits and risk-adjusted returns simultaneously.</p>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"28 2\",\"pages\":\"143-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/isaf.1493\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 1

摘要

本文采用基于代理的多资产模型,在跟踪利润和风险调整收益的同时,考察了风险偏好和最优再平衡频率对绩效指标的影响。本文主要研究了在不同市场条件下,由具有二次效用函数的异质性均值-方差优化器管理的投资组合的演化。我们表明,从长远来看,耐心和风险厌恶者能够胜过积极的冒险者。我们的研究结果还表明,由偏离投资组合目标的最优容忍度决定的交易频率应该从再平衡收益和再平衡成本之间的权衡中得出。在一个相对平静的市场,6%到8%的绝对范围和完全回调技术优于其他技术。然而,在特定的动荡时期,现有的再平衡技术都无法同时提高经税收调整后的利润和经风险调整后的回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Who gains and who loses on stock markets? Risk preferences and timing matter

This paper uses an agent-based multi-asset model to examine the effect of risk preferences and optimal rebalancing frequency on performance measures while tracking profit and risk-adjusted return. We focus on the evolution of portfolios managed by heterogeneous mean-variance optimizers with a quadratic utility function under different market conditions. We show that patient and risk-averse agents are able to outperform aggressive risk-takers in the long-run. Our findings also suggest that the trading frequency determined by the optimal tolerance for the deviation from portfolio targets should be derived from a tradeoff between rebalancing benefits and rebalancing costs. In a relatively calm market, the absolute range of 6% to 8% and the complete-way back rebalancing technique outperforms others. During particular turbulent periods, however, none of the existing rebalancing techniques improves tax-adjusted profits and risk-adjusted returns simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
期刊最新文献
The Technological Innovation of the Metaverse in Financial Sector: Current State, Opportunities, and Open Challenges Issue Information Liquidity forecasting at corporate and subsidiary levels using machine learning Identification of fraudulent financial statements through a multi-label classification approach Predicting carbon and oil price returns using hybrid models based on machine and deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1