化学蚀刻谐振LGS微传感器

G. Douchet, O. Medeira, F. Sthal, T. Leblois
{"title":"化学蚀刻谐振LGS微传感器","authors":"G. Douchet, O. Medeira, F. Sthal, T. Leblois","doi":"10.1109/FREQ.2010.5556259","DOIUrl":null,"url":null,"abstract":"Materials like langasite (LGS), langatate (LGT) or gallium orthophosphate (GaPO4) crystals have higher piezoelectric coefficients and also have a better high-temperature behaviour than quartz crystal. Thus they are worth being considered as a replacement for quartz in applications such as oscillators, piezoelectric accelerometers, microbalances or clocks. Length-extension resonators have already been manufactured using quartz crystal in order to get atomically-resolved imaging by frequency-modulation atomic force microscopy. The goal of this study is to obtain better results with langasite. It has been shown that LGS-crystal microsensors should have a sensitivity three times better than quartz crystal ones. This fact added to the existence of temperature-compensated cuts for the extensional mode of vibration is of prime importance for applications such as microcantilevers for frequency-modulation atomic force microscopes. This paper focuses on the fabrication of Langasite resonators with different cut angles around the temperature-compensated cuts both in length-extension and flexure mode.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chemically etched resonant LGS microsensors\",\"authors\":\"G. Douchet, O. Medeira, F. Sthal, T. Leblois\",\"doi\":\"10.1109/FREQ.2010.5556259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Materials like langasite (LGS), langatate (LGT) or gallium orthophosphate (GaPO4) crystals have higher piezoelectric coefficients and also have a better high-temperature behaviour than quartz crystal. Thus they are worth being considered as a replacement for quartz in applications such as oscillators, piezoelectric accelerometers, microbalances or clocks. Length-extension resonators have already been manufactured using quartz crystal in order to get atomically-resolved imaging by frequency-modulation atomic force microscopy. The goal of this study is to obtain better results with langasite. It has been shown that LGS-crystal microsensors should have a sensitivity three times better than quartz crystal ones. This fact added to the existence of temperature-compensated cuts for the extensional mode of vibration is of prime importance for applications such as microcantilevers for frequency-modulation atomic force microscopes. This paper focuses on the fabrication of Langasite resonators with different cut angles around the temperature-compensated cuts both in length-extension and flexure mode.\",\"PeriodicalId\":344989,\"journal\":{\"name\":\"2010 IEEE International Frequency Control Symposium\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Frequency Control Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2010.5556259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2010.5556259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

langasite (LGS), langate (LGT)或GaPO4 (GaPO4)晶体等材料具有更高的压电系数,并且比石英晶体具有更好的高温性能。因此,在振荡器、压电加速度计、微天平或时钟等应用中,它们值得被视为石英的替代品。为了获得调频原子力显微镜的原子分辨成像,已经用石英晶体制造出了长度扩展谐振器。本研究的目的是用langasite获得更好的效果。研究表明,lgs晶体微传感器的灵敏度应该是石英晶体微传感器的3倍。这一事实加上存在的温度补偿切割的扩展振动模式,是最重要的应用,如微悬臂的调频原子力显微镜。本文重点研究了在长度-延伸和弯曲模式下,在温度补偿切口周围具有不同切口角度的Langasite谐振腔的制备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemically etched resonant LGS microsensors
Materials like langasite (LGS), langatate (LGT) or gallium orthophosphate (GaPO4) crystals have higher piezoelectric coefficients and also have a better high-temperature behaviour than quartz crystal. Thus they are worth being considered as a replacement for quartz in applications such as oscillators, piezoelectric accelerometers, microbalances or clocks. Length-extension resonators have already been manufactured using quartz crystal in order to get atomically-resolved imaging by frequency-modulation atomic force microscopy. The goal of this study is to obtain better results with langasite. It has been shown that LGS-crystal microsensors should have a sensitivity three times better than quartz crystal ones. This fact added to the existence of temperature-compensated cuts for the extensional mode of vibration is of prime importance for applications such as microcantilevers for frequency-modulation atomic force microscopes. This paper focuses on the fabrication of Langasite resonators with different cut angles around the temperature-compensated cuts both in length-extension and flexure mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blackbody radiation shifts and magic wavelengths for atomic clock research Multiplexed optical link for ultra-stable frequency dissemination Frequency stability and phase noise of an improved X-band cryocooled sapphire oscillator Frequency shifts of colliding fermions in optical lattice clocks Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1