一种用于目标定位的概率轮廓判别法

J. MacCormick, A. Blake
{"title":"一种用于目标定位的概率轮廓判别法","authors":"J. MacCormick, A. Blake","doi":"10.1109/ICCV.1998.710748","DOIUrl":null,"url":null,"abstract":"A method of localising objects in images is proposed. Possible configurations are evaluated using the contour discriminant, a likelihood ratio which is derived from a probabilistic model of the feature detection process. We treat each step in this process probabilistically, including the occurrence of clutter features, and derive the observation densities for both correct \"target\" configurations and incorrect \"clutter\" configurations. The contour discriminant distinguishes target objects from the background even in heavy clutter, making only the most general assumptions about the form that clutter might take. The method generates samples stochastically to avoid the cost of processing an entire image, and promises to be particularly suited to the task of initialising contour trackers based on sampling methods.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"A probabilistic contour discriminant for object localisation\",\"authors\":\"J. MacCormick, A. Blake\",\"doi\":\"10.1109/ICCV.1998.710748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of localising objects in images is proposed. Possible configurations are evaluated using the contour discriminant, a likelihood ratio which is derived from a probabilistic model of the feature detection process. We treat each step in this process probabilistically, including the occurrence of clutter features, and derive the observation densities for both correct \\\"target\\\" configurations and incorrect \\\"clutter\\\" configurations. The contour discriminant distinguishes target objects from the background even in heavy clutter, making only the most general assumptions about the form that clutter might take. The method generates samples stochastically to avoid the cost of processing an entire image, and promises to be particularly suited to the task of initialising contour trackers based on sampling methods.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

提出了一种图像中目标的定位方法。使用轮廓判别法评估可能的配置,这是一种来自特征检测过程的概率模型的似然比。我们以概率的方式处理这一过程中的每一步,包括杂波特征的出现,并推导出正确的“目标”构型和错误的“杂波”构型的观测密度。即使在严重的杂波中,轮廓判别法也能将目标物体与背景区分开来,只对杂波可能采取的形式做出最一般的假设。该方法随机生成样本以避免处理整个图像的成本,并承诺特别适合基于采样方法初始化轮廓跟踪器的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A probabilistic contour discriminant for object localisation
A method of localising objects in images is proposed. Possible configurations are evaluated using the contour discriminant, a likelihood ratio which is derived from a probabilistic model of the feature detection process. We treat each step in this process probabilistically, including the occurrence of clutter features, and derive the observation densities for both correct "target" configurations and incorrect "clutter" configurations. The contour discriminant distinguishes target objects from the background even in heavy clutter, making only the most general assumptions about the form that clutter might take. The method generates samples stochastically to avoid the cost of processing an entire image, and promises to be particularly suited to the task of initialising contour trackers based on sampling methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing and evaluating interest points Snake pedals: geometric models with physics-based control Recovering epipolar geometry by reactive tabu search Utilization of stereo disparity and optical flow information for human interaction Intensity and feature based stereo matching by disparity parameterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1