基于成岩过程的成岩相识别——以渤中X油田古近系湖泊沉积砂岩为例

Q. Wendao, Y. Taiju, Su Shaochuan, Zhang Chang-min, H. Guowei, H. Miao, X. Min
{"title":"基于成岩过程的成岩相识别——以渤中X油田古近系湖泊沉积砂岩为例","authors":"Q. Wendao, Y. Taiju, Su Shaochuan, Zhang Chang-min, H. Guowei, H. Miao, X. Min","doi":"10.11648/J.EARTH.20180704.13","DOIUrl":null,"url":null,"abstract":"Based on diagenetic evolution, reservoir diagenetic facies evolution was restored in burial history through quantitatively calculating the original porosity reconstructed by compaction, cementation and dissolution using core measurement data. The essence of this method was illustrated and its effectiveness was demonstrated using Paleogene lake sediment sandstone in Bozhong X oilfield, Bohai Bay Basin, China. Because diagenetic field changes as the structure depth increases or decreases and acts on deposition, diagenetic facies can be significantly different in different geological period. The Ed1 reservoir has experienced such an evolutionary process of W-Com_W-Cla-C_M-Car-C to M-Com_M-Clay-C_W-Qua-C_W-Fel-D_W-Car-D to M-Com_M-Cla-C_W-Qua-C_W-Fel-D_W-Car-D, while the Ed 2 , the Ed3 and the Es 1 are W-Com_W-Cla-C to M-Com_M-Cla-C-S-Com_S-Clay-C_W-Qua-C_W-Fel-D to S-Com_S-Cla-C_W-Qua-C_M-Fel-D, M-Com_W-Cla-C_W-Qua-C_W-Fel-D to M-Com_M-Cla-C_W-Qua-C_W-Fel-D to S-Com_M-Clay-C_W-Qua-C_S-Fel-D to S-Com_S-Clay-C_M-Qua-C_S-Fel-D and M-Com_W-Cla-C_W-Car-C to M-Com_M-Cla-C_W-Car-C_M-Fel-D_W-Car-D to M-Com_M-Clay-C_S-Fel-D_M-Car-D to S-Com_M-Cla-C _S-Fel-D_ M-Car-D respectively. Through this study, the reason for the dynamic change of sand body in the diagenetic field and the anisotropy of the reservoir are revealed.","PeriodicalId":350455,"journal":{"name":"Eearth","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of Diagenetic Facies Based on Diagenetic Process: An Example from Paleogene Lake Sediment Sandstone in Bozhong X Oilfield\",\"authors\":\"Q. Wendao, Y. Taiju, Su Shaochuan, Zhang Chang-min, H. Guowei, H. Miao, X. Min\",\"doi\":\"10.11648/J.EARTH.20180704.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on diagenetic evolution, reservoir diagenetic facies evolution was restored in burial history through quantitatively calculating the original porosity reconstructed by compaction, cementation and dissolution using core measurement data. The essence of this method was illustrated and its effectiveness was demonstrated using Paleogene lake sediment sandstone in Bozhong X oilfield, Bohai Bay Basin, China. Because diagenetic field changes as the structure depth increases or decreases and acts on deposition, diagenetic facies can be significantly different in different geological period. The Ed1 reservoir has experienced such an evolutionary process of W-Com_W-Cla-C_M-Car-C to M-Com_M-Clay-C_W-Qua-C_W-Fel-D_W-Car-D to M-Com_M-Cla-C_W-Qua-C_W-Fel-D_W-Car-D, while the Ed 2 , the Ed3 and the Es 1 are W-Com_W-Cla-C to M-Com_M-Cla-C-S-Com_S-Clay-C_W-Qua-C_W-Fel-D to S-Com_S-Cla-C_W-Qua-C_M-Fel-D, M-Com_W-Cla-C_W-Qua-C_W-Fel-D to M-Com_M-Cla-C_W-Qua-C_W-Fel-D to S-Com_M-Clay-C_W-Qua-C_S-Fel-D to S-Com_S-Clay-C_M-Qua-C_S-Fel-D and M-Com_W-Cla-C_W-Car-C to M-Com_M-Cla-C_W-Car-C_M-Fel-D_W-Car-D to M-Com_M-Clay-C_S-Fel-D_M-Car-D to S-Com_M-Cla-C _S-Fel-D_ M-Car-D respectively. Through this study, the reason for the dynamic change of sand body in the diagenetic field and the anisotropy of the reservoir are revealed.\",\"PeriodicalId\":350455,\"journal\":{\"name\":\"Eearth\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eearth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.EARTH.20180704.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eearth","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.EARTH.20180704.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在成岩演化的基础上,利用岩心测量资料定量计算压实、胶结、溶蚀重建的原始孔隙度,恢复了埋藏史上储层成岩相演化。以渤海湾盆地渤中X油田古近系湖泊沉积砂岩为例,说明了该方法的实质和有效性。由于成岩场随构造深度的增减而变化,并对沉积起作用,因此不同地质时期的成岩相可能存在显著差异。Ed1储层经历了从W-Com_W-Cla-C_M-Car-C到m - com_m - cla - c_w - fil - d_w - car - d到m - com_m - cla - c_w - qua - c_w - fil - d_w - car - d的演化过程,而ed2、Ed3和Es 1则经历了从W-Com_W-Cla-C到m - com_m - cla - c - s - com_s - clay - c_w - qua - c_w - fil - d到s - com_s - cla - c_w - qua - c_m - feld的演化过程。m - com_w - cla - c_w - qua - c_w - feld到m - com_m - cla - c_w - qua - c_w - feld到s - com_m - cla - c_m - qua - c_s - feld, m - com_w - cla - c_w - c_w - car - c到m - com_m - cla - c_w - feld_w - car - d到m - com_m - cla - c_s - feld_m - car - d到S-Com_M-Cla-C _s - fel_d_ M-Car-D。通过研究,揭示了成岩场砂体动态变化的原因和储层的各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Diagenetic Facies Based on Diagenetic Process: An Example from Paleogene Lake Sediment Sandstone in Bozhong X Oilfield
Based on diagenetic evolution, reservoir diagenetic facies evolution was restored in burial history through quantitatively calculating the original porosity reconstructed by compaction, cementation and dissolution using core measurement data. The essence of this method was illustrated and its effectiveness was demonstrated using Paleogene lake sediment sandstone in Bozhong X oilfield, Bohai Bay Basin, China. Because diagenetic field changes as the structure depth increases or decreases and acts on deposition, diagenetic facies can be significantly different in different geological period. The Ed1 reservoir has experienced such an evolutionary process of W-Com_W-Cla-C_M-Car-C to M-Com_M-Clay-C_W-Qua-C_W-Fel-D_W-Car-D to M-Com_M-Cla-C_W-Qua-C_W-Fel-D_W-Car-D, while the Ed 2 , the Ed3 and the Es 1 are W-Com_W-Cla-C to M-Com_M-Cla-C-S-Com_S-Clay-C_W-Qua-C_W-Fel-D to S-Com_S-Cla-C_W-Qua-C_M-Fel-D, M-Com_W-Cla-C_W-Qua-C_W-Fel-D to M-Com_M-Cla-C_W-Qua-C_W-Fel-D to S-Com_M-Clay-C_W-Qua-C_S-Fel-D to S-Com_S-Clay-C_M-Qua-C_S-Fel-D and M-Com_W-Cla-C_W-Car-C to M-Com_M-Cla-C_W-Car-C_M-Fel-D_W-Car-D to M-Com_M-Clay-C_S-Fel-D_M-Car-D to S-Com_M-Cla-C _S-Fel-D_ M-Car-D respectively. Through this study, the reason for the dynamic change of sand body in the diagenetic field and the anisotropy of the reservoir are revealed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soil Sensitivity to Wind and Water Erosion as Affected by Land Use in Southern Iran Lake Watershed Dynamics and Bathymetry Modeling of Rara and Begnas Lakes in Nepal Vulnerability of Soil Carbon Regulating Ecosystem Services due to Land Cover Change in the State of New Hampshire, USA Mapping the Alteration Zones for Uranium Exploration in Gabal Abu Garadi Area Central Eastern Desert, Egypt, Using Aster Data FischerLab: An Application for Generating Fischer Plots and Dynamic Fischer Plots from Wireline Well-Logs and Stratigraphic Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1