统一的端到端句子去噪

Zhantong Liang, A. Youssef
{"title":"统一的端到端句子去噪","authors":"Zhantong Liang, A. Youssef","doi":"10.1109/CSCI51800.2020.00087","DOIUrl":null,"url":null,"abstract":"It takes more than correct grammar to speak good English. In this paper, we describe the sentence denoising task that reduces the vagueness, redundancy, and irrationality of a grammatical sentence. We define a rich, linguistics-inspired noise taxonomy and establish the formal definition of the problem. A unified end-to-end model based on Transformer is proposed and an efficient algorithm for constructing the training data is given, together with a separate fine-tuning step to get the ideal model. Our method outperforms previous results and keeps good accuracy as the noise composition gets more complicated.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified End-to-End Sentence Denoising\",\"authors\":\"Zhantong Liang, A. Youssef\",\"doi\":\"10.1109/CSCI51800.2020.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It takes more than correct grammar to speak good English. In this paper, we describe the sentence denoising task that reduces the vagueness, redundancy, and irrationality of a grammatical sentence. We define a rich, linguistics-inspired noise taxonomy and establish the formal definition of the problem. A unified end-to-end model based on Transformer is proposed and an efficient algorithm for constructing the training data is given, together with a separate fine-tuning step to get the ideal model. Our method outperforms previous results and keeps good accuracy as the noise composition gets more complicated.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

说一口流利的英语需要的不仅仅是正确的语法。在本文中,我们描述了句子去噪任务,以减少语法句子的模糊,冗余和不合理。我们定义了一个丰富的,受语言学启发的噪声分类,并建立了问题的正式定义。提出了一种基于Transformer的统一的端到端模型,给出了一种高效的训练数据构造算法,并给出了一个单独的微调步骤,以获得理想的模型。该方法在噪声组成复杂的情况下仍能保持较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unified End-to-End Sentence Denoising
It takes more than correct grammar to speak good English. In this paper, we describe the sentence denoising task that reduces the vagueness, redundancy, and irrationality of a grammatical sentence. We define a rich, linguistics-inspired noise taxonomy and establish the formal definition of the problem. A unified end-to-end model based on Transformer is proposed and an efficient algorithm for constructing the training data is given, together with a separate fine-tuning step to get the ideal model. Our method outperforms previous results and keeps good accuracy as the noise composition gets more complicated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First Success of Cancer Gene Data Analysis of 169 Microarrays for Medical Diagnosis Artificial Intelligence in Computerized Adaptive Testing Evidence for Monitoring the User and Computing the User’s trust Transfer of Hierarchical Reinforcement Learning Structures for Robotic Manipulation Tasks An open-source application built with R programming language for clinical laboratories to innovate process of excellence and overcome the uncertain outlook during the global healthcare crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1