V. Mitrović, I. Cvetkovic, D. Boroyevich, Joseph Wheeler, R. Vance
{"title":"FutureHAUS的电子能源系统和能源管理算法","authors":"V. Mitrović, I. Cvetkovic, D. Boroyevich, Joseph Wheeler, R. Vance","doi":"10.1109/CPERE56564.2023.10119540","DOIUrl":null,"url":null,"abstract":"Technology advancements that happened in the last two decades have changed the way how people live, interact, and work more than any technology did in the past 100 years or so. Not only little “gadgets” enabled this enormous paradigm shift, the new innovative concepts have been well integrated into the design and manufacturing of computers, appliances, automobiles, airplanes, and ships, and it was about time to start seeing these concepts applied to the homes where building practices, by contrast, experienced a very slow, if not resistant effort to advance. At least they did before Virginia Tech demonstrated the use of advanced manufacturing concepts, prefabricated structures, and a great number of power electronics to redefine the conventional practice of modern home design. Its FutureHAUS won first place at the international competition in Dubai, UAE, validating an enormous societal desire to see this change finally happening. This paper will describe details of the electronic energy system implementation as well as an energy management algorithm developed to successfully achieve a net-positive energy balance in the FutureHAUS.","PeriodicalId":169048,"journal":{"name":"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic Energy System and Energy Management Algorithm for FutureHAUS\",\"authors\":\"V. Mitrović, I. Cvetkovic, D. Boroyevich, Joseph Wheeler, R. Vance\",\"doi\":\"10.1109/CPERE56564.2023.10119540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology advancements that happened in the last two decades have changed the way how people live, interact, and work more than any technology did in the past 100 years or so. Not only little “gadgets” enabled this enormous paradigm shift, the new innovative concepts have been well integrated into the design and manufacturing of computers, appliances, automobiles, airplanes, and ships, and it was about time to start seeing these concepts applied to the homes where building practices, by contrast, experienced a very slow, if not resistant effort to advance. At least they did before Virginia Tech demonstrated the use of advanced manufacturing concepts, prefabricated structures, and a great number of power electronics to redefine the conventional practice of modern home design. Its FutureHAUS won first place at the international competition in Dubai, UAE, validating an enormous societal desire to see this change finally happening. This paper will describe details of the electronic energy system implementation as well as an energy management algorithm developed to successfully achieve a net-positive energy balance in the FutureHAUS.\",\"PeriodicalId\":169048,\"journal\":{\"name\":\"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPERE56564.2023.10119540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPERE56564.2023.10119540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electronic Energy System and Energy Management Algorithm for FutureHAUS
Technology advancements that happened in the last two decades have changed the way how people live, interact, and work more than any technology did in the past 100 years or so. Not only little “gadgets” enabled this enormous paradigm shift, the new innovative concepts have been well integrated into the design and manufacturing of computers, appliances, automobiles, airplanes, and ships, and it was about time to start seeing these concepts applied to the homes where building practices, by contrast, experienced a very slow, if not resistant effort to advance. At least they did before Virginia Tech demonstrated the use of advanced manufacturing concepts, prefabricated structures, and a great number of power electronics to redefine the conventional practice of modern home design. Its FutureHAUS won first place at the international competition in Dubai, UAE, validating an enormous societal desire to see this change finally happening. This paper will describe details of the electronic energy system implementation as well as an energy management algorithm developed to successfully achieve a net-positive energy balance in the FutureHAUS.