利用DLMS/COSEM数据压缩学习功耗模式

Marcell Fehér, D. Lucani, Morten Tranberg Hansen, Flemming Enevold Vester
{"title":"利用DLMS/COSEM数据压缩学习功耗模式","authors":"Marcell Fehér, D. Lucani, Morten Tranberg Hansen, Flemming Enevold Vester","doi":"10.1109/SmartGridComm51999.2021.9632291","DOIUrl":null,"url":null,"abstract":"Smart electricity meters are widely deployed report power consumption automatically and frequently. However, the current compression methods have been suspected to leak information about the times when consumers are active, by mirroring spikes of power consumption in the compressed message size. In this paper we show that, compressed message sizes are indeed highly correlated with the underlying power use. We present a clustering-based method that allows a passive adversary monitoring encrypted network traffic to build and exploit power consumption profiles of homes. We evaluate the vulnerability of legacy compressors of the DLMS/COSEM standard as well as a recently proposed algorithm. Our results show that the novel algorithm not only provides higher compression potential, but results in the least information leakage. We evaluate our results on an real, anonymized dataset spanning 9 months and 95 households.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploiting DLMS/COSEM Data Compression To Learn Power Consumption Patterns\",\"authors\":\"Marcell Fehér, D. Lucani, Morten Tranberg Hansen, Flemming Enevold Vester\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart electricity meters are widely deployed report power consumption automatically and frequently. However, the current compression methods have been suspected to leak information about the times when consumers are active, by mirroring spikes of power consumption in the compressed message size. In this paper we show that, compressed message sizes are indeed highly correlated with the underlying power use. We present a clustering-based method that allows a passive adversary monitoring encrypted network traffic to build and exploit power consumption profiles of homes. We evaluate the vulnerability of legacy compressors of the DLMS/COSEM standard as well as a recently proposed algorithm. Our results show that the novel algorithm not only provides higher compression potential, but results in the least information leakage. We evaluate our results on an real, anonymized dataset spanning 9 months and 95 households.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

智能电表已广泛部署,可以自动、频繁地报告用电量。然而,人们怀疑当前的压缩方法会通过在压缩消息大小中镜像功耗峰值来泄露有关消费者活动时间的信息。在本文中,我们表明,压缩消息的大小确实与底层的电力使用高度相关。我们提出了一种基于集群的方法,允许被动对手监控加密网络流量来建立和利用家庭的电力消耗概况。我们评估了DLMS/COSEM标准的遗留压缩器以及最近提出的算法的脆弱性。结果表明,该算法不仅具有较高的压缩潜力,而且具有最小的信息泄漏。我们在一个真实的、匿名的数据集上评估了我们的结果,这个数据集跨越了9个月和95个家庭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting DLMS/COSEM Data Compression To Learn Power Consumption Patterns
Smart electricity meters are widely deployed report power consumption automatically and frequently. However, the current compression methods have been suspected to leak information about the times when consumers are active, by mirroring spikes of power consumption in the compressed message size. In this paper we show that, compressed message sizes are indeed highly correlated with the underlying power use. We present a clustering-based method that allows a passive adversary monitoring encrypted network traffic to build and exploit power consumption profiles of homes. We evaluate the vulnerability of legacy compressors of the DLMS/COSEM standard as well as a recently proposed algorithm. Our results show that the novel algorithm not only provides higher compression potential, but results in the least information leakage. We evaluate our results on an real, anonymized dataset spanning 9 months and 95 households.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1