持续学习的任务选择转换器

Sheng-Kai Huang, Chun-Rong Huang
{"title":"持续学习的任务选择转换器","authors":"Sheng-Kai Huang, Chun-Rong Huang","doi":"10.23919/MVA57639.2023.10215673","DOIUrl":null,"url":null,"abstract":"The goal of continual learning is to let the models continuously learn the new incoming knowledge without catastrophic forgetting. To address this issue, we propose a transformer-based framework with the task selection module. The task selection module will select corresponding task tokens to assist the learning of incoming samples of new tasks. For previous samples, the selected task tokens can retain the previous knowledge to assist the prediction of samples of learned classes. Compared with the state-of-the-art methods, our method achieves good performance on the CIFAR-100 dataset especially for the testing of the last task to show that our method can better prevent catastrophic forgetting.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer with Task Selection for Continual Learning\",\"authors\":\"Sheng-Kai Huang, Chun-Rong Huang\",\"doi\":\"10.23919/MVA57639.2023.10215673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of continual learning is to let the models continuously learn the new incoming knowledge without catastrophic forgetting. To address this issue, we propose a transformer-based framework with the task selection module. The task selection module will select corresponding task tokens to assist the learning of incoming samples of new tasks. For previous samples, the selected task tokens can retain the previous knowledge to assist the prediction of samples of learned classes. Compared with the state-of-the-art methods, our method achieves good performance on the CIFAR-100 dataset especially for the testing of the last task to show that our method can better prevent catastrophic forgetting.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

持续学习的目标是让模型不断学习新传入的知识,而不会出现灾难性的遗忘。为了解决这个问题,我们提出了一个带有任务选择模块的基于转换器的框架。任务选择模块将选择相应的任务令牌,以帮助学习新任务的传入样本。对于以前的样本,选择的任务令牌可以保留以前的知识,以帮助预测学习类的样本。与目前最先进的方法相比,我们的方法在CIFAR-100数据集上取得了良好的性能,特别是在最后一个任务的测试中,表明我们的方法可以更好地防止灾难性遗忘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformer with Task Selection for Continual Learning
The goal of continual learning is to let the models continuously learn the new incoming knowledge without catastrophic forgetting. To address this issue, we propose a transformer-based framework with the task selection module. The task selection module will select corresponding task tokens to assist the learning of incoming samples of new tasks. For previous samples, the selected task tokens can retain the previous knowledge to assist the prediction of samples of learned classes. Compared with the state-of-the-art methods, our method achieves good performance on the CIFAR-100 dataset especially for the testing of the last task to show that our method can better prevent catastrophic forgetting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small Object Detection for Birds with Swin Transformer CG-based dataset generation and adversarial image conversion for deep cucumber recognition Uncertainty Criteria in Active Transfer Learning for Efficient Video-Specific Human Pose Estimation Joint Learning with Group Relation and Individual Action Diabetic Retinopathy Grading based on a Sparse Network Fusion of Heterogeneous ConvNeXt Models with Category Attention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1