S. K. Ameri, R. Ho, H. Jang, Yu Wang, David M Schnyer, D. Akinwande, N. Lu
{"title":"基于石墨烯的最薄透明表皮传感器系统","authors":"S. K. Ameri, R. Ho, H. Jang, Yu Wang, David M Schnyer, D. Akinwande, N. Lu","doi":"10.1109/IEDM.2016.7838446","DOIUrl":null,"url":null,"abstract":"We report the first demonstration of a graphene-based epidermal sensor system (GESS) with total thickness below 500 nm. The GESS is manufactured by the cost-effective and rapid “cut-and-paste” method on tattoo paper and can be directly laminated on human skin like a temporary transfer tattoo. Without any tape or adhesive, the GESS completely conforms to the microscopic morphology of human skin via van der Waals interaction. The softness and transparency of the GESS, make it the world's first epidermal sensor system that is invisible both mechanically and optically. The GESS has been successfully applied to measure electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) with signal-to-noise ratio comparable with commercial electrodes, in addition to skin temperature and skin hydration. The thin and transparent graphene epidermal sensor can be used for the first time enable simultaneous electrical and optical epidermal sensing.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Thinnest transparent epidermal sensor system based on graphene\",\"authors\":\"S. K. Ameri, R. Ho, H. Jang, Yu Wang, David M Schnyer, D. Akinwande, N. Lu\",\"doi\":\"10.1109/IEDM.2016.7838446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the first demonstration of a graphene-based epidermal sensor system (GESS) with total thickness below 500 nm. The GESS is manufactured by the cost-effective and rapid “cut-and-paste” method on tattoo paper and can be directly laminated on human skin like a temporary transfer tattoo. Without any tape or adhesive, the GESS completely conforms to the microscopic morphology of human skin via van der Waals interaction. The softness and transparency of the GESS, make it the world's first epidermal sensor system that is invisible both mechanically and optically. The GESS has been successfully applied to measure electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) with signal-to-noise ratio comparable with commercial electrodes, in addition to skin temperature and skin hydration. The thin and transparent graphene epidermal sensor can be used for the first time enable simultaneous electrical and optical epidermal sensing.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thinnest transparent epidermal sensor system based on graphene
We report the first demonstration of a graphene-based epidermal sensor system (GESS) with total thickness below 500 nm. The GESS is manufactured by the cost-effective and rapid “cut-and-paste” method on tattoo paper and can be directly laminated on human skin like a temporary transfer tattoo. Without any tape or adhesive, the GESS completely conforms to the microscopic morphology of human skin via van der Waals interaction. The softness and transparency of the GESS, make it the world's first epidermal sensor system that is invisible both mechanically and optically. The GESS has been successfully applied to measure electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) with signal-to-noise ratio comparable with commercial electrodes, in addition to skin temperature and skin hydration. The thin and transparent graphene epidermal sensor can be used for the first time enable simultaneous electrical and optical epidermal sensing.