{"title":"流行病传播的分形方面","authors":"A. Deppman","doi":"10.24966/ciit-8844/1000052","DOIUrl":null,"url":null,"abstract":"The main properties of a fractal model to describe the epidemic spread of diseases are discussed. The most important features of the epidemic process that leads to the conclusion of an underlying fractal structure are analyzed, and the meaning of the parameters of the model are investigated. It is shown that the existence of a fractal mechanism in the epidemic evolution leads to a simple relation between time interval for the epidemic spread and the population size. It is shown that the contamination rate varies with the population size. The relevant differences between the SIR model and the fractal model are discussed.","PeriodicalId":370947,"journal":{"name":"Clinical Immunology and Immunotherapy","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal Aspects Of Epidemic Spread\",\"authors\":\"A. Deppman\",\"doi\":\"10.24966/ciit-8844/1000052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main properties of a fractal model to describe the epidemic spread of diseases are discussed. The most important features of the epidemic process that leads to the conclusion of an underlying fractal structure are analyzed, and the meaning of the parameters of the model are investigated. It is shown that the existence of a fractal mechanism in the epidemic evolution leads to a simple relation between time interval for the epidemic spread and the population size. It is shown that the contamination rate varies with the population size. The relevant differences between the SIR model and the fractal model are discussed.\",\"PeriodicalId\":370947,\"journal\":{\"name\":\"Clinical Immunology and Immunotherapy\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Immunology and Immunotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24966/ciit-8844/1000052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Immunology and Immunotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24966/ciit-8844/1000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The main properties of a fractal model to describe the epidemic spread of diseases are discussed. The most important features of the epidemic process that leads to the conclusion of an underlying fractal structure are analyzed, and the meaning of the parameters of the model are investigated. It is shown that the existence of a fractal mechanism in the epidemic evolution leads to a simple relation between time interval for the epidemic spread and the population size. It is shown that the contamination rate varies with the population size. The relevant differences between the SIR model and the fractal model are discussed.