S. Obilikpa, U. Onochie, Chinyere S. Nweze, C. Nwoziri, Bright O. Kalu, Ken-Basil I. Anazodo, Chima Nweke
{"title":"高效混合能量收集的主要机制:综述和最新进展","authors":"S. Obilikpa, U. Onochie, Chinyere S. Nweze, C. Nwoziri, Bright O. Kalu, Ken-Basil I. Anazodo, Chima Nweke","doi":"10.51983/arme-2021.10.2.3136","DOIUrl":null,"url":null,"abstract":"Devastating environmental issues and the cost of replacement of batteries in autonomous low-powered electrical, electronic, and mechatronic systems, the interest in ambient energy harvesting has witnessed steady growth recently. The maximization and utilization of these eco-friendly energies have given rise to efficient hybrid energy harvesting, which involves the combination of two or more standalone energy harvesting mechanisms such as Vibrational, thermoelectric, pyroelectric, photovoltaic, etc. The comparison of the recent development, applications, and challenges of the major standalone and hybrid harvesting mechanisms in both large and small-scale mechanisms are the main emphasis of this article. Also, this review holistically discussed the latest optimal techniques utilized in hybrid energy harvesting mechanisms for the effective performance of systems and to guarantee stable power to autonomous electronics and wireless sensor networks. The study will help research scholars to understand and focus on the high-potential techniques to achieve maximum power from hybrid harvesters.","PeriodicalId":340179,"journal":{"name":"Asian Review of Mechanical Engineering","volume":"2453 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Major Mechanisms for Efficient Hybrid Energy Harvesting: Overview and Recent Developments\",\"authors\":\"S. Obilikpa, U. Onochie, Chinyere S. Nweze, C. Nwoziri, Bright O. Kalu, Ken-Basil I. Anazodo, Chima Nweke\",\"doi\":\"10.51983/arme-2021.10.2.3136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Devastating environmental issues and the cost of replacement of batteries in autonomous low-powered electrical, electronic, and mechatronic systems, the interest in ambient energy harvesting has witnessed steady growth recently. The maximization and utilization of these eco-friendly energies have given rise to efficient hybrid energy harvesting, which involves the combination of two or more standalone energy harvesting mechanisms such as Vibrational, thermoelectric, pyroelectric, photovoltaic, etc. The comparison of the recent development, applications, and challenges of the major standalone and hybrid harvesting mechanisms in both large and small-scale mechanisms are the main emphasis of this article. Also, this review holistically discussed the latest optimal techniques utilized in hybrid energy harvesting mechanisms for the effective performance of systems and to guarantee stable power to autonomous electronics and wireless sensor networks. The study will help research scholars to understand and focus on the high-potential techniques to achieve maximum power from hybrid harvesters.\",\"PeriodicalId\":340179,\"journal\":{\"name\":\"Asian Review of Mechanical Engineering\",\"volume\":\"2453 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Review of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51983/arme-2021.10.2.3136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Review of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/arme-2021.10.2.3136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Major Mechanisms for Efficient Hybrid Energy Harvesting: Overview and Recent Developments
Devastating environmental issues and the cost of replacement of batteries in autonomous low-powered electrical, electronic, and mechatronic systems, the interest in ambient energy harvesting has witnessed steady growth recently. The maximization and utilization of these eco-friendly energies have given rise to efficient hybrid energy harvesting, which involves the combination of two or more standalone energy harvesting mechanisms such as Vibrational, thermoelectric, pyroelectric, photovoltaic, etc. The comparison of the recent development, applications, and challenges of the major standalone and hybrid harvesting mechanisms in both large and small-scale mechanisms are the main emphasis of this article. Also, this review holistically discussed the latest optimal techniques utilized in hybrid energy harvesting mechanisms for the effective performance of systems and to guarantee stable power to autonomous electronics and wireless sensor networks. The study will help research scholars to understand and focus on the high-potential techniques to achieve maximum power from hybrid harvesters.