{"title":"基于svm的SIP消息流异常检测","authors":"Raihana Ferdous, R. Cigno, A. Zorat","doi":"10.1109/ICMLA.2012.109","DOIUrl":null,"url":null,"abstract":"Voice and multimedia communications are rapidly migrating from traditional networks to TCP/IP networks (Internet), where services are provisioned by SIP (Session Initiation Protocol). This paper proposes an on-line filter that examines the stream of incoming SIP messages and classifies them as good or bad. The classification is carried out in two stages: first a lexical analysis is performed to weed out those messages that do not belong to the language generated by the grammar defined by the SIP standard. After this first stage, a second filtering occurs which identifies messages that somehow differ - in structure or contents - from messages that were previously classified as good. While the first filter stage is straightforward, as the classification is crisp (either a messages belongs to the language or it does not), the second stage requires a more delicate handling, as it is not a sharp decision whether a message is semantically meaningful or not. The approach we followed for this step is based on using past experience on previously classified messages, i.e. a \"learn-by-example\" approach, which led to a classifier based on Support-Vector-Machines (SVM) to perform the required analysis of each incoming SIP message. The paper describes the overall architecture of the two-stage filter and then explores several points of the configuration-space for the SVM to determine a good configuration setting that will perform well when used to classify a large sample of SIP messages obtained from real traffic collected on a VoIP installation at our institution. Finally, the performance of the classification on additional messages collected from the same source is presented.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On the Use of SVMs to Detect Anomalies in a Stream of SIP Messages\",\"authors\":\"Raihana Ferdous, R. Cigno, A. Zorat\",\"doi\":\"10.1109/ICMLA.2012.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voice and multimedia communications are rapidly migrating from traditional networks to TCP/IP networks (Internet), where services are provisioned by SIP (Session Initiation Protocol). This paper proposes an on-line filter that examines the stream of incoming SIP messages and classifies them as good or bad. The classification is carried out in two stages: first a lexical analysis is performed to weed out those messages that do not belong to the language generated by the grammar defined by the SIP standard. After this first stage, a second filtering occurs which identifies messages that somehow differ - in structure or contents - from messages that were previously classified as good. While the first filter stage is straightforward, as the classification is crisp (either a messages belongs to the language or it does not), the second stage requires a more delicate handling, as it is not a sharp decision whether a message is semantically meaningful or not. The approach we followed for this step is based on using past experience on previously classified messages, i.e. a \\\"learn-by-example\\\" approach, which led to a classifier based on Support-Vector-Machines (SVM) to perform the required analysis of each incoming SIP message. The paper describes the overall architecture of the two-stage filter and then explores several points of the configuration-space for the SVM to determine a good configuration setting that will perform well when used to classify a large sample of SIP messages obtained from real traffic collected on a VoIP installation at our institution. Finally, the performance of the classification on additional messages collected from the same source is presented.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Use of SVMs to Detect Anomalies in a Stream of SIP Messages
Voice and multimedia communications are rapidly migrating from traditional networks to TCP/IP networks (Internet), where services are provisioned by SIP (Session Initiation Protocol). This paper proposes an on-line filter that examines the stream of incoming SIP messages and classifies them as good or bad. The classification is carried out in two stages: first a lexical analysis is performed to weed out those messages that do not belong to the language generated by the grammar defined by the SIP standard. After this first stage, a second filtering occurs which identifies messages that somehow differ - in structure or contents - from messages that were previously classified as good. While the first filter stage is straightforward, as the classification is crisp (either a messages belongs to the language or it does not), the second stage requires a more delicate handling, as it is not a sharp decision whether a message is semantically meaningful or not. The approach we followed for this step is based on using past experience on previously classified messages, i.e. a "learn-by-example" approach, which led to a classifier based on Support-Vector-Machines (SVM) to perform the required analysis of each incoming SIP message. The paper describes the overall architecture of the two-stage filter and then explores several points of the configuration-space for the SVM to determine a good configuration setting that will perform well when used to classify a large sample of SIP messages obtained from real traffic collected on a VoIP installation at our institution. Finally, the performance of the classification on additional messages collected from the same source is presented.