云计算网络入侵分类:迈向智能分类系统的一步

Kanda Alamer, Abdulaziz Aldribi
{"title":"云计算网络入侵分类:迈向智能分类系统的一步","authors":"Kanda Alamer, Abdulaziz Aldribi","doi":"10.1109/CICN56167.2022.10008346","DOIUrl":null,"url":null,"abstract":"One of the most rapidly spreading areas of infor-mation technology is cloud computing. However, this raises sig-nificant security issues that entice burglars. This paper presents a machine learning-based framework for intrusion classification for cloud computing networks. It offers new capabilities derived from cloud network flow. By dividing the flow into windows of time, a method known as the Riemann Chunking Scheme computes these features. After experimenting with this dataset, we have extracted 40 features that best describe the problem of anomaly classification and improve the accuracy of the study on multilayer perceptron for anomaly classification in cloud network traffic","PeriodicalId":287589,"journal":{"name":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrusion Classification for Cloud Computing Network: A Step Towards an Intelligent Classification System\",\"authors\":\"Kanda Alamer, Abdulaziz Aldribi\",\"doi\":\"10.1109/CICN56167.2022.10008346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most rapidly spreading areas of infor-mation technology is cloud computing. However, this raises sig-nificant security issues that entice burglars. This paper presents a machine learning-based framework for intrusion classification for cloud computing networks. It offers new capabilities derived from cloud network flow. By dividing the flow into windows of time, a method known as the Riemann Chunking Scheme computes these features. After experimenting with this dataset, we have extracted 40 features that best describe the problem of anomaly classification and improve the accuracy of the study on multilayer perceptron for anomaly classification in cloud network traffic\",\"PeriodicalId\":287589,\"journal\":{\"name\":\"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN56167.2022.10008346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN56167.2022.10008346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云计算是信息技术中发展最为迅速的领域之一。然而,这引发了重大的安全问题,吸引了窃贼。提出了一种基于机器学习的云计算网络入侵分类框架。它提供了源自云网络流的新功能。通过将流划分为时间窗口,一种称为Riemann Chunking Scheme的方法可以计算这些特征。通过对该数据集的实验,我们提取了40个最能描述异常分类问题的特征,提高了云网络流量中多层感知器异常分类研究的准确性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrusion Classification for Cloud Computing Network: A Step Towards an Intelligent Classification System
One of the most rapidly spreading areas of infor-mation technology is cloud computing. However, this raises sig-nificant security issues that entice burglars. This paper presents a machine learning-based framework for intrusion classification for cloud computing networks. It offers new capabilities derived from cloud network flow. By dividing the flow into windows of time, a method known as the Riemann Chunking Scheme computes these features. After experimenting with this dataset, we have extracted 40 features that best describe the problem of anomaly classification and improve the accuracy of the study on multilayer perceptron for anomaly classification in cloud network traffic
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Downhole Pressure while Tripping A Parallelized Genetic Algorithms approach to Community Energy Systems Planning Application of Artificial Neural Network to Estimate Students Performance in Scholastic Assessment Test A New Intelligent System for Evaluating and Assisting Students in Laboratory Learning Management System Performance Evaluation of Machine Learning Models on Apache Spark: An Empirical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1