厌氧消化过程识别的递归神经网络模型

R. Galván-Guerra, I. Baruch
{"title":"厌氧消化过程识别的递归神经网络模型","authors":"R. Galván-Guerra, I. Baruch","doi":"10.1109/MICAI.2007.10","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of a recurrent neural network model (RNNM) for decentralized and centralized identification of an aerobic digestion process, carried out in a fixed bed and a recirculation tank anaerobic wastewater treatment system. The analytical model of the digestion bioprocess represented a distributed parameter system, which is reduced to a lumped system using the orthogonal collocation method, applied in three collocation points. The proposed decentralized RNNM consists of four independently working recurrent neural networks (RNN), so to approximate the process dynamics in three different measurement points plus the recirculation tank. The RNN learning algorithm is the dynamic Backpropagation one. The comparative graphical simulation results of the digestion wastewater treatment system approximation, obtained via decentralized and centralized RNNM learning, exhibited a good convergence, and precise plant variables tracking.","PeriodicalId":296192,"journal":{"name":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Anaerobic Digestion Process Identification Using Recurrent Neural Network Model\",\"authors\":\"R. Galván-Guerra, I. Baruch\",\"doi\":\"10.1109/MICAI.2007.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of a recurrent neural network model (RNNM) for decentralized and centralized identification of an aerobic digestion process, carried out in a fixed bed and a recirculation tank anaerobic wastewater treatment system. The analytical model of the digestion bioprocess represented a distributed parameter system, which is reduced to a lumped system using the orthogonal collocation method, applied in three collocation points. The proposed decentralized RNNM consists of four independently working recurrent neural networks (RNN), so to approximate the process dynamics in three different measurement points plus the recirculation tank. The RNN learning algorithm is the dynamic Backpropagation one. The comparative graphical simulation results of the digestion wastewater treatment system approximation, obtained via decentralized and centralized RNNM learning, exhibited a good convergence, and precise plant variables tracking.\",\"PeriodicalId\":296192,\"journal\":{\"name\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2007.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2007.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出使用循环神经网络模型(RNNM)对固定床和循环池厌氧废水处理系统中进行的好氧消化过程进行分散和集中识别。消化生物过程的解析模型是一个分布参数系统,采用正交配点法将其简化为集总系统,并应用于三个配点中。该方法由四个独立工作的递归神经网络(RNN)组成,以近似三个不同测量点加上再循环罐的过程动态。RNN学习算法是一种动态反向传播算法。通过分散RNNM学习和集中RNNM学习得到的消化废水处理系统近似的对比图形仿真结果显示出良好的收敛性和精确的植物变量跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anaerobic Digestion Process Identification Using Recurrent Neural Network Model
This paper proposes the use of a recurrent neural network model (RNNM) for decentralized and centralized identification of an aerobic digestion process, carried out in a fixed bed and a recirculation tank anaerobic wastewater treatment system. The analytical model of the digestion bioprocess represented a distributed parameter system, which is reduced to a lumped system using the orthogonal collocation method, applied in three collocation points. The proposed decentralized RNNM consists of four independently working recurrent neural networks (RNN), so to approximate the process dynamics in three different measurement points plus the recirculation tank. The RNN learning algorithm is the dynamic Backpropagation one. The comparative graphical simulation results of the digestion wastewater treatment system approximation, obtained via decentralized and centralized RNNM learning, exhibited a good convergence, and precise plant variables tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Tools to Time Series Forecasting Algorithm for Affective Pattern Recognition by Means of Use of First Initial Momentum Uncertain Reasoning in Multi-agent Ontology Mapping on the Semantic Web Segmentation and Extraction of Morphologic Features from Capillary Images An Intelligent Agent Using a Q-Learning Method to Allocate Replicated Data in a Distributed Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1