混合生存模型方法学:在临床试验中癌症免疫治疗评估中的应用

L. Sanchez, Patricia Lorenzo-Luaces, C. Fonte, A. Lage
{"title":"混合生存模型方法学:在临床试验中癌症免疫治疗评估中的应用","authors":"L. Sanchez, Patricia Lorenzo-Luaces, C. Fonte, A. Lage","doi":"10.21203/rs.2.18321/v1","DOIUrl":null,"url":null,"abstract":"\n Progress in immunotherapy revolutionized the treatment landscape for advanced lung cancer, raising survival expectations beyond those that were historically anticipated with this disease. In the present study, we describe the methods for the adjustment of mixture parametric models of two populations for survival analysis in the presence of long survivors. A methodology is proposed in several five steps: first, it is proposed to use the multimodality test to decide the number of subpopulations to be considered in the model, second to adjust simple parametric survival models and mixture distribution models, to estimate the parameters and to select the best model fitted the data, finally, to test the hypotheses to compare the effectiveness of immunotherapies in the context of randomized clinical trials. The methodology is illustrated with data from a clinical trial that evaluates the effectiveness of the therapeutic vaccine CIMAvaxEGF vs the best supportive care for the treatment of advanced lung cancer. The mixture survival model allows estimating the presence of a subpopulation of long survivors that is 44% for vaccinated patients. The differences between the treated and control group were significant in both subpopulations (population of short-term survival: p = 0.001, the population of long-term survival: p = 0.0002). For cancer therapies, where a proportion of patients achieves long-term control of the disease, the heterogeneity of the population must be taken into account. Mixture parametric models may be more suitable to detect the effectiveness of immunotherapies compared to standard models.","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixture survival models methodology: an application to cancer immunotherapy assessment in clinical trials\",\"authors\":\"L. Sanchez, Patricia Lorenzo-Luaces, C. Fonte, A. Lage\",\"doi\":\"10.21203/rs.2.18321/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Progress in immunotherapy revolutionized the treatment landscape for advanced lung cancer, raising survival expectations beyond those that were historically anticipated with this disease. In the present study, we describe the methods for the adjustment of mixture parametric models of two populations for survival analysis in the presence of long survivors. A methodology is proposed in several five steps: first, it is proposed to use the multimodality test to decide the number of subpopulations to be considered in the model, second to adjust simple parametric survival models and mixture distribution models, to estimate the parameters and to select the best model fitted the data, finally, to test the hypotheses to compare the effectiveness of immunotherapies in the context of randomized clinical trials. The methodology is illustrated with data from a clinical trial that evaluates the effectiveness of the therapeutic vaccine CIMAvaxEGF vs the best supportive care for the treatment of advanced lung cancer. The mixture survival model allows estimating the presence of a subpopulation of long survivors that is 44% for vaccinated patients. The differences between the treated and control group were significant in both subpopulations (population of short-term survival: p = 0.001, the population of long-term survival: p = 0.0002). For cancer therapies, where a proportion of patients achieves long-term control of the disease, the heterogeneity of the population must be taken into account. Mixture parametric models may be more suitable to detect the effectiveness of immunotherapies compared to standard models.\",\"PeriodicalId\":409996,\"journal\":{\"name\":\"arXiv: Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.2.18321/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.2.18321/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

免疫疗法的进步彻底改变了晚期肺癌的治疗前景,提高了这种疾病的生存预期,超出了历史上的预期。在本研究中,我们描述了在长存活者存在的情况下,两个种群的混合参数模型的调整方法。提出了一种方法,分为五个步骤:首先,提出使用多模态检验来确定模型中要考虑的亚群数量;其次,调整简单参数生存模型和混合分布模型,估计参数并选择最适合数据的模型;最后,检验假设以比较随机临床试验背景下免疫疗法的有效性。该方法是用临床试验的数据来说明的,该试验评估了治疗性疫苗CIMAvaxEGF与治疗晚期肺癌的最佳支持治疗的有效性。混合生存模型允许估计长期幸存者亚群的存在,在接种疫苗的患者中占44%。治疗组和对照组之间的差异在两个亚群中都是显著的(短期生存群体:p = 0.001,长期生存群体:p = 0.0002)。对于癌症治疗,当一部分患者实现了疾病的长期控制时,必须考虑到人群的异质性。与标准模型相比,混合参数模型可能更适合于检测免疫疗法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixture survival models methodology: an application to cancer immunotherapy assessment in clinical trials
Progress in immunotherapy revolutionized the treatment landscape for advanced lung cancer, raising survival expectations beyond those that were historically anticipated with this disease. In the present study, we describe the methods for the adjustment of mixture parametric models of two populations for survival analysis in the presence of long survivors. A methodology is proposed in several five steps: first, it is proposed to use the multimodality test to decide the number of subpopulations to be considered in the model, second to adjust simple parametric survival models and mixture distribution models, to estimate the parameters and to select the best model fitted the data, finally, to test the hypotheses to compare the effectiveness of immunotherapies in the context of randomized clinical trials. The methodology is illustrated with data from a clinical trial that evaluates the effectiveness of the therapeutic vaccine CIMAvaxEGF vs the best supportive care for the treatment of advanced lung cancer. The mixture survival model allows estimating the presence of a subpopulation of long survivors that is 44% for vaccinated patients. The differences between the treated and control group were significant in both subpopulations (population of short-term survival: p = 0.001, the population of long-term survival: p = 0.0002). For cancer therapies, where a proportion of patients achieves long-term control of the disease, the heterogeneity of the population must be taken into account. Mixture parametric models may be more suitable to detect the effectiveness of immunotherapies compared to standard models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data Bayesian classification for dating archaeological sites via projectile points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1