基于微分误差和微分函数约束的自适应学习率改进反向传播算法

T. Kathirvalavakumar, S. J. Subavathi
{"title":"基于微分误差和微分函数约束的自适应学习率改进反向传播算法","authors":"T. Kathirvalavakumar, S. J. Subavathi","doi":"10.1109/ICPRIME.2012.6208288","DOIUrl":null,"url":null,"abstract":"In this paper, a new adaptive learning rate algorithm to train a single hidden layer neural network is proposed. The adaptive learning rate is derived by differentiating linear and nonlinear errors and functional constraints weight decay term at hidden layer and penalty term at output layer. Since the adaptive learning rate calculation involves first order derivative of linear and nonlinear errors and second order derivatives of functional constraints, the proposed algorithm converges quickly. Simulation results show the advantages of proposed algorithm.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modified backpropagation algorithm with adaptive learning rate based on differential errors and differential functional constraints\",\"authors\":\"T. Kathirvalavakumar, S. J. Subavathi\",\"doi\":\"10.1109/ICPRIME.2012.6208288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new adaptive learning rate algorithm to train a single hidden layer neural network is proposed. The adaptive learning rate is derived by differentiating linear and nonlinear errors and functional constraints weight decay term at hidden layer and penalty term at output layer. Since the adaptive learning rate calculation involves first order derivative of linear and nonlinear errors and second order derivatives of functional constraints, the proposed algorithm converges quickly. Simulation results show the advantages of proposed algorithm.\",\"PeriodicalId\":148511,\"journal\":{\"name\":\"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPRIME.2012.6208288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的自适应学习率算法来训练单隐层神经网络。通过对线性误差和非线性误差以及隐层的函数约束权衰减项和输出层的惩罚项进行微分,推导出自适应学习率。由于自适应学习率计算涉及线性和非线性误差的一阶导数和函数约束的二阶导数,因此该算法收敛速度快。仿真结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified backpropagation algorithm with adaptive learning rate based on differential errors and differential functional constraints
In this paper, a new adaptive learning rate algorithm to train a single hidden layer neural network is proposed. The adaptive learning rate is derived by differentiating linear and nonlinear errors and functional constraints weight decay term at hidden layer and penalty term at output layer. Since the adaptive learning rate calculation involves first order derivative of linear and nonlinear errors and second order derivatives of functional constraints, the proposed algorithm converges quickly. Simulation results show the advantages of proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimized cluster based approach for multi-source multicast routing protocol in mobile ad hoc networks with differential evolution Increasing cluster uniqueness in Fuzzy C-Means through affinity measure Rule extraction from neural networks — A comparative study Text extraction from digital English comic image using two blobs extraction method A novel approach for Kannada text extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1