基于双分支网络的医学图像自动分割方法

Lei Yang, H. Huang, Suli Bai, Yanhong Liu
{"title":"基于双分支网络的医学图像自动分割方法","authors":"Lei Yang, H. Huang, Suli Bai, Yanhong Liu","doi":"10.1109/ACAIT56212.2022.10137944","DOIUrl":null,"url":null,"abstract":"Medical image segmentation is a basal and essential task for computer-aided diagnosis and quantification of diseases. However, robust and precise medical image segmentation is still a challenging task on account of much factors, such as complex backgrounds, overlapping structures, high variation of appearances and low contrast. Recently, with the strong support of deep convolutional neural networks (DCNNs), the encoder-decoder based segmentation networks have been the popular detection schemes for medical image analysis, yet image segmentation based on DCNNs still faces some limitations, such as restricted receptive field, limited information flow, etc. To address such challenges, a novel dual-branch deep residual U-Net network is proposed in this paper for medical image detection which provides more avenues for information flow to gather both high-level and low-level feature maps and a greater depth of contextual data.A residual U-Net network is constructed for efficient feature expression using residual learning, attention block, and feature expression. Meanwhile, fused with atrous spatial pyramid pooling (ASPP) block and squeeze-and-excitation (SE) block, The residual U-Net network is suggested to embed an attention fusion block to gather multi-scale contextual data. On the basis, To fully utilize local contextual data and increase segmentation precision, a dual-branch deep residual U-Net network is built by stacking two residual U-Net networks. Combined with multiple public benchmark data sets on medical images, including the CVC-ClinicDB, the GIAS set and LUNA16 set, experimental results indicate the superior ability of proposed segmentation network on medical image segmentation compared with other advanced segmentation models.","PeriodicalId":398228,"journal":{"name":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automatic Medical Image Segmentation Approach via Dual-Branch Network\",\"authors\":\"Lei Yang, H. Huang, Suli Bai, Yanhong Liu\",\"doi\":\"10.1109/ACAIT56212.2022.10137944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical image segmentation is a basal and essential task for computer-aided diagnosis and quantification of diseases. However, robust and precise medical image segmentation is still a challenging task on account of much factors, such as complex backgrounds, overlapping structures, high variation of appearances and low contrast. Recently, with the strong support of deep convolutional neural networks (DCNNs), the encoder-decoder based segmentation networks have been the popular detection schemes for medical image analysis, yet image segmentation based on DCNNs still faces some limitations, such as restricted receptive field, limited information flow, etc. To address such challenges, a novel dual-branch deep residual U-Net network is proposed in this paper for medical image detection which provides more avenues for information flow to gather both high-level and low-level feature maps and a greater depth of contextual data.A residual U-Net network is constructed for efficient feature expression using residual learning, attention block, and feature expression. Meanwhile, fused with atrous spatial pyramid pooling (ASPP) block and squeeze-and-excitation (SE) block, The residual U-Net network is suggested to embed an attention fusion block to gather multi-scale contextual data. On the basis, To fully utilize local contextual data and increase segmentation precision, a dual-branch deep residual U-Net network is built by stacking two residual U-Net networks. Combined with multiple public benchmark data sets on medical images, including the CVC-ClinicDB, the GIAS set and LUNA16 set, experimental results indicate the superior ability of proposed segmentation network on medical image segmentation compared with other advanced segmentation models.\",\"PeriodicalId\":398228,\"journal\":{\"name\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACAIT56212.2022.10137944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAIT56212.2022.10137944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医学图像分割是计算机辅助疾病诊断和量化的基础和必要工作。然而,由于医学图像背景复杂、结构重叠、外观变化大、对比度低等因素,对医学图像进行鲁棒和精确分割仍然是一项具有挑战性的任务。近年来,在深度卷积神经网络(deep convolutional neural networks, DCNNs)的大力支持下,基于编码器-解码器的图像分割网络已成为医学图像分析的热门检测方案,但基于深度卷积神经网络的图像分割仍然存在接受野受限、信息流受限等局限性。为了解决这些问题,本文提出了一种新的双分支深度残差U-Net网络用于医学图像检测,该网络为信息流提供了更多的途径来收集高级和低级特征图以及更深入的上下文数据。利用残差学习、注意块和特征表达等方法构建残差U-Net网络,实现高效的特征表达。同时,建议残差U-Net网络与空间金字塔池(ASPP)和挤压激励(SE)块融合,嵌入一个注意力融合块来收集多尺度上下文数据。在此基础上,为了充分利用本地上下文数据,提高分割精度,将两个残差U-Net网络叠加,构建双分支深度残差U-Net网络。结合CVC-ClinicDB、GIAS集和LUNA16集等多个公开的医学图像基准数据集,实验结果表明,所提出的分割网络在医学图像分割方面的能力优于其他先进的分割模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Automatic Medical Image Segmentation Approach via Dual-Branch Network
Medical image segmentation is a basal and essential task for computer-aided diagnosis and quantification of diseases. However, robust and precise medical image segmentation is still a challenging task on account of much factors, such as complex backgrounds, overlapping structures, high variation of appearances and low contrast. Recently, with the strong support of deep convolutional neural networks (DCNNs), the encoder-decoder based segmentation networks have been the popular detection schemes for medical image analysis, yet image segmentation based on DCNNs still faces some limitations, such as restricted receptive field, limited information flow, etc. To address such challenges, a novel dual-branch deep residual U-Net network is proposed in this paper for medical image detection which provides more avenues for information flow to gather both high-level and low-level feature maps and a greater depth of contextual data.A residual U-Net network is constructed for efficient feature expression using residual learning, attention block, and feature expression. Meanwhile, fused with atrous spatial pyramid pooling (ASPP) block and squeeze-and-excitation (SE) block, The residual U-Net network is suggested to embed an attention fusion block to gather multi-scale contextual data. On the basis, To fully utilize local contextual data and increase segmentation precision, a dual-branch deep residual U-Net network is built by stacking two residual U-Net networks. Combined with multiple public benchmark data sets on medical images, including the CVC-ClinicDB, the GIAS set and LUNA16 set, experimental results indicate the superior ability of proposed segmentation network on medical image segmentation compared with other advanced segmentation models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transformer with Global and Local Interaction for Pedestrian Trajectory Prediction The Use of Explainable Artificial Intelligence in Music—Take Professor Nick Bryan-Kinns’ “XAI+Music” Research as a Perspective Playing Fight the Landlord with Tree Search and Hidden Information Evaluation Evaluation Method of Innovative Economic Benefits of Enterprise Human Capital Based on Deep Learning An Attribute Contribution-Based K-Nearest Neighbor Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1