T. Saleh, Yap Haw Hann, Z. Zhen, A. Mamun, P. Vadakkepat
{"title":"陀螺仪稳定单轮机器人的设计","authors":"T. Saleh, Yap Haw Hann, Z. Zhen, A. Mamun, P. Vadakkepat","doi":"10.1109/RAMECH.2004.1438038","DOIUrl":null,"url":null,"abstract":"Conventional design of a mobile robot ensures its stability by keeping the gravity vector through the center of mass inside the structure's polygon of support determined by the contact points between the structure and the ground. This assumption of quasi-static stability fails to hold when the robot moves at high speed as the inertial forces become significant compared to the static gravitational force. On the other hand, the momentum of the moving structure can be exploited to enhance stability if it is dynamically controlled. This principle was exploited to build a gyroscopically stabilized single-wheeled robot by researchers at Carnegie Melon University (CMU). Our design follows the same principle for stability but uses a different mechanism to effect forward and reverse motion.","PeriodicalId":252964,"journal":{"name":"IEEE Conference on Robotics, Automation and Mechatronics, 2004.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Design of a gyroscopically stabilized single-wheeled robot\",\"authors\":\"T. Saleh, Yap Haw Hann, Z. Zhen, A. Mamun, P. Vadakkepat\",\"doi\":\"10.1109/RAMECH.2004.1438038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional design of a mobile robot ensures its stability by keeping the gravity vector through the center of mass inside the structure's polygon of support determined by the contact points between the structure and the ground. This assumption of quasi-static stability fails to hold when the robot moves at high speed as the inertial forces become significant compared to the static gravitational force. On the other hand, the momentum of the moving structure can be exploited to enhance stability if it is dynamically controlled. This principle was exploited to build a gyroscopically stabilized single-wheeled robot by researchers at Carnegie Melon University (CMU). Our design follows the same principle for stability but uses a different mechanism to effect forward and reverse motion.\",\"PeriodicalId\":252964,\"journal\":{\"name\":\"IEEE Conference on Robotics, Automation and Mechatronics, 2004.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Robotics, Automation and Mechatronics, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMECH.2004.1438038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Robotics, Automation and Mechatronics, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMECH.2004.1438038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a gyroscopically stabilized single-wheeled robot
Conventional design of a mobile robot ensures its stability by keeping the gravity vector through the center of mass inside the structure's polygon of support determined by the contact points between the structure and the ground. This assumption of quasi-static stability fails to hold when the robot moves at high speed as the inertial forces become significant compared to the static gravitational force. On the other hand, the momentum of the moving structure can be exploited to enhance stability if it is dynamically controlled. This principle was exploited to build a gyroscopically stabilized single-wheeled robot by researchers at Carnegie Melon University (CMU). Our design follows the same principle for stability but uses a different mechanism to effect forward and reverse motion.