基于网格划分的人群感知个性化位置隐私保护

Sun Wei, Lei Zhang, Jing Li
{"title":"基于网格划分的人群感知个性化位置隐私保护","authors":"Sun Wei, Lei Zhang, Jing Li","doi":"10.1109/ISAIEE57420.2022.00107","DOIUrl":null,"url":null,"abstract":"The existing generalization-based location privacy protection scheme of Crowd-Sensing cannot balance user privacy needs and data quality, and uses a uniform policy to protect all locations of all users. To address this problem, this paper proposes a personalized privacy protection scheme, which first calculates the sensitivity of each location based on location entropy, access frequency and other features, and then encodes the location using Geo-hash code. The prefixes of different lengths are chosen according to the different sensitivities to achieve different strengths of privacy protection. Finally, a reasonable gridding algorithm is designed so that the data quality does not degrade as the protection strength increases, thus achieving the goal of improving data quality while protecting the user's location privacy. Finally, the effectiveness of the proposed algorithm is further verified through experiments.","PeriodicalId":345703,"journal":{"name":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalised Location Privacy Protection based on Grid Division for Crowd-Sensing\",\"authors\":\"Sun Wei, Lei Zhang, Jing Li\",\"doi\":\"10.1109/ISAIEE57420.2022.00107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing generalization-based location privacy protection scheme of Crowd-Sensing cannot balance user privacy needs and data quality, and uses a uniform policy to protect all locations of all users. To address this problem, this paper proposes a personalized privacy protection scheme, which first calculates the sensitivity of each location based on location entropy, access frequency and other features, and then encodes the location using Geo-hash code. The prefixes of different lengths are chosen according to the different sensitivities to achieve different strengths of privacy protection. Finally, a reasonable gridding algorithm is designed so that the data quality does not degrade as the protection strength increases, thus achieving the goal of improving data quality while protecting the user's location privacy. Finally, the effectiveness of the proposed algorithm is further verified through experiments.\",\"PeriodicalId\":345703,\"journal\":{\"name\":\"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAIEE57420.2022.00107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAIEE57420.2022.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于泛化的人群感知位置隐私保护方案无法平衡用户隐私需求和数据质量,使用统一的策略对所有用户的所有位置进行保护。针对这一问题,本文提出了一种个性化的隐私保护方案,该方案首先根据位置熵、访问频率等特征计算每个位置的敏感性,然后使用Geo-hash码对位置进行编码。根据不同的灵敏度选择不同长度的前缀,以达到不同的隐私保护力度。最后,设计合理的网格化算法,使数据质量不会随着保护强度的增加而下降,从而达到在提高数据质量的同时保护用户位置隐私的目的。最后,通过实验进一步验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalised Location Privacy Protection based on Grid Division for Crowd-Sensing
The existing generalization-based location privacy protection scheme of Crowd-Sensing cannot balance user privacy needs and data quality, and uses a uniform policy to protect all locations of all users. To address this problem, this paper proposes a personalized privacy protection scheme, which first calculates the sensitivity of each location based on location entropy, access frequency and other features, and then encodes the location using Geo-hash code. The prefixes of different lengths are chosen according to the different sensitivities to achieve different strengths of privacy protection. Finally, a reasonable gridding algorithm is designed so that the data quality does not degrade as the protection strength increases, thus achieving the goal of improving data quality while protecting the user's location privacy. Finally, the effectiveness of the proposed algorithm is further verified through experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Parallel Data Mining Based on Spark Research and Development of a Portable Ultrasonic Device for Detecting Urine Volume Research on Data Transmission Simulation System Based on Computer 3D Simulation Technology Brain Tumor Prediction with LSTM Method CRIoU: A Complete and Relevant Bounding Box Regression Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1