认知无线电网络中人工智能驱动的自优化接收机

Yingying Wang, Xinyao Tang, G. Mendis, Jin Wei-Kocsis, A. Madanayake, S. Mandal
{"title":"认知无线电网络中人工智能驱动的自优化接收机","authors":"Yingying Wang, Xinyao Tang, G. Mendis, Jin Wei-Kocsis, A. Madanayake, S. Mandal","doi":"10.1109/CCAAW.2019.8904889","DOIUrl":null,"url":null,"abstract":"Cognitive radios (CRs) based on reconfigurable radio frequency (RF) electronics are a key requirement for implementing next-generation dynamic spectrum access (DSA) algorithms that improve management of the congested sub-6 GHz wireless spectrum. Suitable CRs incorporate adaptive components such as tunable notch filters, matching networks, and dynamic beamformers that can be intelligently tuned by RF scene analysis and situational awareness algorithms. Here we propose CR receivers that use machine learning (ML)-based modulation recognition (MR) algorithms for wideband real-time monitoring of spectral usage. The proposed systems enable detection and avoidance of anomalous signals. They also increase channel capacity and wireless data rates by exploiting white spaces in both licensed and unlicensed bands. An artificial intelligence (AI)-driven single-channel CR receiver prototype operating around 3 GHz has been implemented and tested. Experimental results show i) good over-the-air MR accuracy for several common modulation schemes using a deep belief network (DBN); and ii) autonomous self-optimization of the tunable RF front-end.","PeriodicalId":196580,"journal":{"name":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AI - Driven Self-Optimizing Receivers for Cognitive Radio Networks\",\"authors\":\"Yingying Wang, Xinyao Tang, G. Mendis, Jin Wei-Kocsis, A. Madanayake, S. Mandal\",\"doi\":\"10.1109/CCAAW.2019.8904889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radios (CRs) based on reconfigurable radio frequency (RF) electronics are a key requirement for implementing next-generation dynamic spectrum access (DSA) algorithms that improve management of the congested sub-6 GHz wireless spectrum. Suitable CRs incorporate adaptive components such as tunable notch filters, matching networks, and dynamic beamformers that can be intelligently tuned by RF scene analysis and situational awareness algorithms. Here we propose CR receivers that use machine learning (ML)-based modulation recognition (MR) algorithms for wideband real-time monitoring of spectral usage. The proposed systems enable detection and avoidance of anomalous signals. They also increase channel capacity and wireless data rates by exploiting white spaces in both licensed and unlicensed bands. An artificial intelligence (AI)-driven single-channel CR receiver prototype operating around 3 GHz has been implemented and tested. Experimental results show i) good over-the-air MR accuracy for several common modulation schemes using a deep belief network (DBN); and ii) autonomous self-optimization of the tunable RF front-end.\",\"PeriodicalId\":196580,\"journal\":{\"name\":\"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAAW.2019.8904889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAAW.2019.8904889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于可重构射频(RF)电子器件的认知无线电(CRs)是实现下一代动态频谱接入(DSA)算法的关键要求,该算法可改善对拥塞的6 GHz以下无线频谱的管理。合适的cr包含自适应组件,如可调谐陷波滤波器、匹配网络和动态波束形成器,可以通过RF场景分析和态势感知算法智能调谐。在这里,我们提出了使用基于机器学习(ML)的调制识别(MR)算法的宽带实时监测频谱使用的CR接收器。所提出的系统能够检测和避免异常信号。它们还通过利用授权和未授权频段中的空白空间来增加信道容量和无线数据速率。人工智能(AI)驱动的单通道CR接收器原型已经实现并测试,工作频率约为3ghz。实验结果表明:1)采用深度信念网络(DBN)的几种常用调制方案具有良好的无线MR精度;ii)可调谐射频前端的自主自优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI - Driven Self-Optimizing Receivers for Cognitive Radio Networks
Cognitive radios (CRs) based on reconfigurable radio frequency (RF) electronics are a key requirement for implementing next-generation dynamic spectrum access (DSA) algorithms that improve management of the congested sub-6 GHz wireless spectrum. Suitable CRs incorporate adaptive components such as tunable notch filters, matching networks, and dynamic beamformers that can be intelligently tuned by RF scene analysis and situational awareness algorithms. Here we propose CR receivers that use machine learning (ML)-based modulation recognition (MR) algorithms for wideband real-time monitoring of spectral usage. The proposed systems enable detection and avoidance of anomalous signals. They also increase channel capacity and wireless data rates by exploiting white spaces in both licensed and unlicensed bands. An artificial intelligence (AI)-driven single-channel CR receiver prototype operating around 3 GHz has been implemented and tested. Experimental results show i) good over-the-air MR accuracy for several common modulation schemes using a deep belief network (DBN); and ii) autonomous self-optimization of the tunable RF front-end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning based Adaptive Predistorter for High Power Amplifier Linearization A Communication Channel Density Estimating Generative Adversarial Network Robust Deep Reinforcement Learning for Interference Avoidance in Wideband Spectrum Development of a compact and flexible software-defined radio transmitter for small satellite applications Greedy Based Proactive Spectrum Handoff Scheme for Cognitive Radio Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1