基于遗传算法的非线性不确定系统模糊控制中的应用

Po-Chen Chen, K. Yeh, Cheng-Wu Chen, Chen-Yuan Chen
{"title":"基于遗传算法的非线性不确定系统模糊控制中的应用","authors":"Po-Chen Chen, K. Yeh, Cheng-Wu Chen, Chen-Yuan Chen","doi":"10.1109/ACIIDS.2009.86","DOIUrl":null,"url":null,"abstract":"In this study, we strive to combine the advantages of fuzzy theory, genetic algorithms (GA), H-infinite tracking control schemes, smooth control and adaptive laws to design an adaptive fuzzy sliding model controller for the rapid and efficient stabilization of complex and nonlinear systems. First, we utilize a reference model and a fuzzy model (both involvingrules) to describe and well-approximate an uncertain, nonlinear plant. The FLC rules and the consequent parameter are decided on via GA. A boundary-layer function is introduced into these updated laws to cover modeling errors and to guarantee that the state errors converge into a specified error bound. After this, a H-infinite tracking problem is characterized. We solve an eigenvalue problem (EVP), and derive a modified adaptive neural network controller (MANNC) to simultaneously stabilize and control the system and achieve H-infinite control performance.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Application to GA-Based Fuzzy Control for Nonlinear Systems with Uncertainty\",\"authors\":\"Po-Chen Chen, K. Yeh, Cheng-Wu Chen, Chen-Yuan Chen\",\"doi\":\"10.1109/ACIIDS.2009.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we strive to combine the advantages of fuzzy theory, genetic algorithms (GA), H-infinite tracking control schemes, smooth control and adaptive laws to design an adaptive fuzzy sliding model controller for the rapid and efficient stabilization of complex and nonlinear systems. First, we utilize a reference model and a fuzzy model (both involvingrules) to describe and well-approximate an uncertain, nonlinear plant. The FLC rules and the consequent parameter are decided on via GA. A boundary-layer function is introduced into these updated laws to cover modeling errors and to guarantee that the state errors converge into a specified error bound. After this, a H-infinite tracking problem is characterized. We solve an eigenvalue problem (EVP), and derive a modified adaptive neural network controller (MANNC) to simultaneously stabilize and control the system and achieve H-infinite control performance.\",\"PeriodicalId\":275776,\"journal\":{\"name\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIDS.2009.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

在本研究中,我们努力结合模糊理论、遗传算法(GA)、h -∞跟踪控制方案、平滑控制和自适应律的优点,设计一种自适应模糊滑模控制器,用于复杂非线性系统的快速有效镇定。首先,我们利用一个参考模型和一个模糊模型(都包含规则)来描述和很好地逼近一个不确定的非线性对象。通过遗传算法确定FLC规则和相应参数。在这些更新的定律中引入边界层函数来掩盖建模误差,并保证状态误差收敛到指定的误差界内。在此基础上,对h∞跟踪问题进行了表征。在求解特征值问题(EVP)的基础上,推导出一种改进的自适应神经网络控制器(MANNC),实现了系统的同时稳定和控制,实现了h -∞的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application to GA-Based Fuzzy Control for Nonlinear Systems with Uncertainty
In this study, we strive to combine the advantages of fuzzy theory, genetic algorithms (GA), H-infinite tracking control schemes, smooth control and adaptive laws to design an adaptive fuzzy sliding model controller for the rapid and efficient stabilization of complex and nonlinear systems. First, we utilize a reference model and a fuzzy model (both involvingrules) to describe and well-approximate an uncertain, nonlinear plant. The FLC rules and the consequent parameter are decided on via GA. A boundary-layer function is introduced into these updated laws to cover modeling errors and to guarantee that the state errors converge into a specified error bound. After this, a H-infinite tracking problem is characterized. We solve an eigenvalue problem (EVP), and derive a modified adaptive neural network controller (MANNC) to simultaneously stabilize and control the system and achieve H-infinite control performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Data-Searching Algorithms for a Real-Time Information-Delivery System Fuzzy Classification of Incomplete Data with Adaptive Volume Exploring the Use of Social Communications Technologies in Tasks and Its Performance in Organizations Implicit Camera Calibration Using MultiLayer Perceptron Type Neural Network Improved Letter Weighting Feature Selection on Arabic Script Language Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1