SWORD:一个可扩展的Java程序竞争检测器

Yanze Li, Bozhen Liu, Jeff Huang
{"title":"SWORD:一个可扩展的Java程序竞争检测器","authors":"Yanze Li, Bozhen Liu, Jeff Huang","doi":"10.1109/ICSE-Companion.2019.00042","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of SWORD, a scalable and fully automated static data race detector for Java, implemented as a plugin in the Eclipse IDE. SWORD is the first whole program race detector that can scale to millions of lines of code in a few minutes while achieving good precision in practice. The cornerstone of SWORD is a new algorithm that judiciously combines points-to analysis and happens-before analysis efficiently, without losing precision. We have evaluated SWORD on an extensive collection of large-scale open source Java projects. Our results show that SWORD detects more races and reports fewer false positives than the state-of-art race detector, RacerD. Moreover, SWORD requires no human effort to annotate code regions as required by RacerD. SWORD also displays comprehensive bug traces and racing pair information on the GUI, which make debugging the races easier. A demo video is available at https://youtu.be/XQ0CBy7mMaY.","PeriodicalId":273100,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"SWORD: A Scalable Whole Program Race Detector for Java\",\"authors\":\"Yanze Li, Bozhen Liu, Jeff Huang\",\"doi\":\"10.1109/ICSE-Companion.2019.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the design and implementation of SWORD, a scalable and fully automated static data race detector for Java, implemented as a plugin in the Eclipse IDE. SWORD is the first whole program race detector that can scale to millions of lines of code in a few minutes while achieving good precision in practice. The cornerstone of SWORD is a new algorithm that judiciously combines points-to analysis and happens-before analysis efficiently, without losing precision. We have evaluated SWORD on an extensive collection of large-scale open source Java projects. Our results show that SWORD detects more races and reports fewer false positives than the state-of-art race detector, RacerD. Moreover, SWORD requires no human effort to annotate code regions as required by RacerD. SWORD also displays comprehensive bug traces and racing pair information on the GUI, which make debugging the races easier. A demo video is available at https://youtu.be/XQ0CBy7mMaY.\",\"PeriodicalId\":273100,\"journal\":{\"name\":\"2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-Companion.2019.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-Companion.2019.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们介绍了SWORD的设计和实现,这是一个可扩展的、完全自动化的Java静态数据竞争检测器,在Eclipse IDE中作为插件实现。SWORD是第一个完整的程序竞争检测器,它可以在几分钟内扩展到数百万行代码,同时在实践中实现良好的精度。SWORD的基础是一种新的算法,它明智地将点分析和事件分析有效地结合在一起,而不会失去精度。我们在大量的大型开源Java项目中对SWORD进行了评估。我们的研究结果表明,与最先进的种族检测器RacerD相比,SWORD检测到更多的种族,报告的假阳性更少。此外,SWORD不需要人工按照RacerD的要求注释代码区域。SWORD还在GUI上显示全面的错误跟踪和比赛配对信息,这使得调试比赛更加容易。演示视频可在https://youtu.be/XQ0CBy7mMaY上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SWORD: A Scalable Whole Program Race Detector for Java
We present the design and implementation of SWORD, a scalable and fully automated static data race detector for Java, implemented as a plugin in the Eclipse IDE. SWORD is the first whole program race detector that can scale to millions of lines of code in a few minutes while achieving good precision in practice. The cornerstone of SWORD is a new algorithm that judiciously combines points-to analysis and happens-before analysis efficiently, without losing precision. We have evaluated SWORD on an extensive collection of large-scale open source Java projects. Our results show that SWORD detects more races and reports fewer false positives than the state-of-art race detector, RacerD. Moreover, SWORD requires no human effort to annotate code regions as required by RacerD. SWORD also displays comprehensive bug traces and racing pair information on the GUI, which make debugging the races easier. A demo video is available at https://youtu.be/XQ0CBy7mMaY.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Deterioration of Learning-Based Malware Detectors for Android Quantifying Patterns and Programming Strategies in Block-Based Programming Environments A Data-Driven Security Game to Facilitate Information Security Education Toward Detection and Characterization of Variability Bugs in Configurable C Software: An Empirical Study Mimicking User Behavior to Improve In-House Test Suites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1