{"title":"在平均吞吐量约束下最小化芯片多处理器的功耗","authors":"M. Ghasemazar, E. Pakbaznia, Massoud Pedram","doi":"10.1109/ISQED.2010.5450550","DOIUrl":null,"url":null,"abstract":"In a multi-core system, power and performance may be dynamically traded off by utilizing power management (PM). This paper addresses the problem of minimizing the total power consumption of a Chip Multiprocessor (CMP) while maintaining a target average throughput. The proposed solution relies on a hierarchical framework, which employs core consolidation, coarse-grain dynamic voltage and frequency scaling (DVFS), and task assignment at the CMP level and fine-grain DVFS based on closed-loop feedback control at the individual core level. Our experimental results are very favorable showing noticeable average power saving compared to a baseline technique, and demonstrate the high efficacy of the proposed hierarchical PM framework.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Minimizing the power consumption of a Chip Multiprocessor under an average throughput constraint\",\"authors\":\"M. Ghasemazar, E. Pakbaznia, Massoud Pedram\",\"doi\":\"10.1109/ISQED.2010.5450550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multi-core system, power and performance may be dynamically traded off by utilizing power management (PM). This paper addresses the problem of minimizing the total power consumption of a Chip Multiprocessor (CMP) while maintaining a target average throughput. The proposed solution relies on a hierarchical framework, which employs core consolidation, coarse-grain dynamic voltage and frequency scaling (DVFS), and task assignment at the CMP level and fine-grain DVFS based on closed-loop feedback control at the individual core level. Our experimental results are very favorable showing noticeable average power saving compared to a baseline technique, and demonstrate the high efficacy of the proposed hierarchical PM framework.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimizing the power consumption of a Chip Multiprocessor under an average throughput constraint
In a multi-core system, power and performance may be dynamically traded off by utilizing power management (PM). This paper addresses the problem of minimizing the total power consumption of a Chip Multiprocessor (CMP) while maintaining a target average throughput. The proposed solution relies on a hierarchical framework, which employs core consolidation, coarse-grain dynamic voltage and frequency scaling (DVFS), and task assignment at the CMP level and fine-grain DVFS based on closed-loop feedback control at the individual core level. Our experimental results are very favorable showing noticeable average power saving compared to a baseline technique, and demonstrate the high efficacy of the proposed hierarchical PM framework.