{"title":"多传感器数据融合:概念和原理","authors":"C.R. Smith, G. Erickson","doi":"10.1109/PACRIM.1991.160723","DOIUrl":null,"url":null,"abstract":"Multisensor data fusion is concerned with the integration and extraction of information from data obtained by two or more sensors. Assuming the data contaminated with noise, the authors present the necessary definitions and concepts to formulate multisensor data fusion as a problem of inference. The types of problems addressed include detection, resolution, discrimination, and parameter estimation. Specifically, the authors show how to assign probabilities to hypotheses (propositions) when data from different sensors supply information relevant to the hypotheses. Several examples involving two-sensor data fusion are discussed.<<ETX>>","PeriodicalId":289986,"journal":{"name":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multisensor data fusion: concepts and principles\",\"authors\":\"C.R. Smith, G. Erickson\",\"doi\":\"10.1109/PACRIM.1991.160723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multisensor data fusion is concerned with the integration and extraction of information from data obtained by two or more sensors. Assuming the data contaminated with noise, the authors present the necessary definitions and concepts to formulate multisensor data fusion as a problem of inference. The types of problems addressed include detection, resolution, discrimination, and parameter estimation. Specifically, the authors show how to assign probabilities to hypotheses (propositions) when data from different sensors supply information relevant to the hypotheses. Several examples involving two-sensor data fusion are discussed.<<ETX>>\",\"PeriodicalId\":289986,\"journal\":{\"name\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1991.160723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1991.160723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

多传感器数据融合涉及到从两个或多个传感器获得的数据中集成和提取信息。假设数据被噪声污染,作者提出了必要的定义和概念,将多传感器数据融合作为一个推理问题来表述。解决的问题类型包括检测、解决、鉴别和参数估计。具体来说,作者展示了当来自不同传感器的数据提供与假设相关的信息时,如何将概率分配给假设(命题)。讨论了几个涉及双传感器数据融合的例子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multisensor data fusion: concepts and principles
Multisensor data fusion is concerned with the integration and extraction of information from data obtained by two or more sensors. Assuming the data contaminated with noise, the authors present the necessary definitions and concepts to formulate multisensor data fusion as a problem of inference. The types of problems addressed include detection, resolution, discrimination, and parameter estimation. Specifically, the authors show how to assign probabilities to hypotheses (propositions) when data from different sensors supply information relevant to the hypotheses. Several examples involving two-sensor data fusion are discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systolic array implementation of 2-D finite memory filters Adaptive signal-subspace processing based on first-order perturbation analysis Suppression of narrow-band interference and multipath by spread-spectrum receiver using decision-feedback filters An LU factorization algorithm for parallel supercomputers with memory hierarchies DEDIP: a user-friendly environment for digital image processing algorithm development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1