{"title":"辅助谐振整流极变换器","authors":"R. W. D. Doncker, James Patrick Lyons","doi":"10.1109/IAS.1990.152341","DOIUrl":null,"url":null,"abstract":"The auxiliary resonant commutated pole (ARCP), a new power converter topology that fully achieves soft switching without increasing primary device voltage or current ratings, is discussed. The ARCP converter is capable of true pulse-width modulation (PWM) control of each phase. The power circuit relies on the addition of an auxiliary triggered resonant commutation circuit or snubber to commutate the inductive load current from a main diode to an active device, allowing a zero voltage turn-off of the main devices. The auxiliary devices operate in a zero current soft switching mode, thereby requiring minimal current turn-off capability. The operation and control of the ARCP converter are discussed. Its performance is analyzed, and a simulation is presented. It is shown that the ARCP converter is capable of operation at elevated switching frequencies (10-30 kHz), high power levels (200-1000 kW), and high conversion efficiencies. the auxiliary devices will typically account for a 20% increase in the total silicon area of a three-phase power converter.<<ETX>>","PeriodicalId":185839,"journal":{"name":"Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"638","resultStr":"{\"title\":\"The auxiliary resonant commutated pole converter\",\"authors\":\"R. W. D. Doncker, James Patrick Lyons\",\"doi\":\"10.1109/IAS.1990.152341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The auxiliary resonant commutated pole (ARCP), a new power converter topology that fully achieves soft switching without increasing primary device voltage or current ratings, is discussed. The ARCP converter is capable of true pulse-width modulation (PWM) control of each phase. The power circuit relies on the addition of an auxiliary triggered resonant commutation circuit or snubber to commutate the inductive load current from a main diode to an active device, allowing a zero voltage turn-off of the main devices. The auxiliary devices operate in a zero current soft switching mode, thereby requiring minimal current turn-off capability. The operation and control of the ARCP converter are discussed. Its performance is analyzed, and a simulation is presented. It is shown that the ARCP converter is capable of operation at elevated switching frequencies (10-30 kHz), high power levels (200-1000 kW), and high conversion efficiencies. the auxiliary devices will typically account for a 20% increase in the total silicon area of a three-phase power converter.<<ETX>>\",\"PeriodicalId\":185839,\"journal\":{\"name\":\"Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"638\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.1990.152341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.1990.152341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The auxiliary resonant commutated pole (ARCP), a new power converter topology that fully achieves soft switching without increasing primary device voltage or current ratings, is discussed. The ARCP converter is capable of true pulse-width modulation (PWM) control of each phase. The power circuit relies on the addition of an auxiliary triggered resonant commutation circuit or snubber to commutate the inductive load current from a main diode to an active device, allowing a zero voltage turn-off of the main devices. The auxiliary devices operate in a zero current soft switching mode, thereby requiring minimal current turn-off capability. The operation and control of the ARCP converter are discussed. Its performance is analyzed, and a simulation is presented. It is shown that the ARCP converter is capable of operation at elevated switching frequencies (10-30 kHz), high power levels (200-1000 kW), and high conversion efficiencies. the auxiliary devices will typically account for a 20% increase in the total silicon area of a three-phase power converter.<>