基于多目标同步运动模型的雷达与二次传感器数据融合

B. Karlsen, E. Nielsen, Morten T. Pedersen
{"title":"基于多目标同步运动模型的雷达与二次传感器数据融合","authors":"B. Karlsen, E. Nielsen, Morten T. Pedersen","doi":"10.1109/SSPD.2015.7288504","DOIUrl":null,"url":null,"abstract":"We present a method for fusion of radar and secondary sensor data, e.g. AIS (Automatic Identification System), ADS-B (Automatic Dependent Surveillance Broadcast) or IFF (Identification, Friend or Foe) data. The method is based on fusion of kinematic models of target trajectories from the two sensors into kinematic models of the associations. The method can handle several hundred simultaneous targets (shown for 529 x 529 targets + 1600 clutter plots). It does not require several iterations through the data set in order to find associations, and it includes track history from the two sensors. The mathematical framework of the method is based on Kalman filters, maximum likelihood and probability theory as well as kinematics.","PeriodicalId":212668,"journal":{"name":"2015 Sensor Signal Processing for Defence (SSPD)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fusion of Radar and Secondary Sensor Data Using Kinematic Models of Multiple Simultaneous Targets\",\"authors\":\"B. Karlsen, E. Nielsen, Morten T. Pedersen\",\"doi\":\"10.1109/SSPD.2015.7288504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for fusion of radar and secondary sensor data, e.g. AIS (Automatic Identification System), ADS-B (Automatic Dependent Surveillance Broadcast) or IFF (Identification, Friend or Foe) data. The method is based on fusion of kinematic models of target trajectories from the two sensors into kinematic models of the associations. The method can handle several hundred simultaneous targets (shown for 529 x 529 targets + 1600 clutter plots). It does not require several iterations through the data set in order to find associations, and it includes track history from the two sensors. The mathematical framework of the method is based on Kalman filters, maximum likelihood and probability theory as well as kinematics.\",\"PeriodicalId\":212668,\"journal\":{\"name\":\"2015 Sensor Signal Processing for Defence (SSPD)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sensor Signal Processing for Defence (SSPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPD.2015.7288504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPD.2015.7288504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种融合雷达和辅助传感器数据的方法,例如AIS(自动识别系统)、ADS-B(自动相关监视广播)或IFF(敌我识别)数据。该方法基于将两个传感器的目标轨迹的运动学模型融合为关联的运动学模型。该方法可以同时处理数百个目标(如图所示为529 x 529目标+ 1600杂波图)。它不需要通过数据集进行多次迭代来找到关联,并且它包括来自两个传感器的跟踪历史。该方法的数学框架是基于卡尔曼滤波、极大似然和概率论以及运动学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusion of Radar and Secondary Sensor Data Using Kinematic Models of Multiple Simultaneous Targets
We present a method for fusion of radar and secondary sensor data, e.g. AIS (Automatic Identification System), ADS-B (Automatic Dependent Surveillance Broadcast) or IFF (Identification, Friend or Foe) data. The method is based on fusion of kinematic models of target trajectories from the two sensors into kinematic models of the associations. The method can handle several hundred simultaneous targets (shown for 529 x 529 targets + 1600 clutter plots). It does not require several iterations through the data set in order to find associations, and it includes track history from the two sensors. The mathematical framework of the method is based on Kalman filters, maximum likelihood and probability theory as well as kinematics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Removing Speckle Noise by Analysis Dictionary Learning Extraction of Pulse Repetition Interval Based on Incomplete, Noisy TOA Measurements by the Moving Passive Receiver Traffic Scheduling Algorithm for Wireless Mesh Networks Based Defense Networks Incorporating Centralized Scheduling Architecture Direction of Arrival Estimation Using a Cluster of Beams in a Cone-Shaped Digital Array Radar Distributed Implementation for Person Re-Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1