基于双通道复杂频谱映射的移动通信实时语音增强

Ke Tan, Xueliang Zhang, Deliang Wang
{"title":"基于双通道复杂频谱映射的移动通信实时语音增强","authors":"Ke Tan, Xueliang Zhang, Deliang Wang","doi":"10.1109/ICASSP39728.2021.9414346","DOIUrl":null,"url":null,"abstract":"Speech quality and intelligibility can be severely degraded by back-ground noise in mobile communication. In order to attenuate back-ground noise, speech enhancement systems have been integrated into mobile phones, and a microphone array is typically deployed to improve the enhancement performance. This paper proposes a novel approach to real-time speech enhancement for dual-microphone mobile phones. Our approach employs a causal densely-connected convolutional recurrent network to perform dual-channel complex spectral mapping. We apply a structured pruning technique for compressing the model without significantly affecting the enhancement performance. This leads to a real-time enhancement system for on-device processing. Evaluation results show that the pro-posed approach substantially advances the performance of an earlier approach to dual-channel speech enhancement for mobile communication.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-Time Speech Enhancement for Mobile Communication Based on Dual-Channel Complex Spectral Mapping\",\"authors\":\"Ke Tan, Xueliang Zhang, Deliang Wang\",\"doi\":\"10.1109/ICASSP39728.2021.9414346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech quality and intelligibility can be severely degraded by back-ground noise in mobile communication. In order to attenuate back-ground noise, speech enhancement systems have been integrated into mobile phones, and a microphone array is typically deployed to improve the enhancement performance. This paper proposes a novel approach to real-time speech enhancement for dual-microphone mobile phones. Our approach employs a causal densely-connected convolutional recurrent network to perform dual-channel complex spectral mapping. We apply a structured pruning technique for compressing the model without significantly affecting the enhancement performance. This leads to a real-time enhancement system for on-device processing. Evaluation results show that the pro-posed approach substantially advances the performance of an earlier approach to dual-channel speech enhancement for mobile communication.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9414346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在移动通信中,背景噪声会严重降低语音质量和清晰度。为了减弱背景噪声,语音增强系统已被集成到移动电话中,并且通常部署麦克风阵列来提高增强性能。提出了一种双麦克风手机实时语音增强的新方法。我们的方法采用因果密集连接的卷积循环网络来执行双通道复谱映射。我们采用结构化修剪技术来压缩模型,而不会显著影响增强性能。这导致了设备上处理的实时增强系统。评估结果表明,所提出的方法大大提高了先前用于移动通信的双通道语音增强方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Speech Enhancement for Mobile Communication Based on Dual-Channel Complex Spectral Mapping
Speech quality and intelligibility can be severely degraded by back-ground noise in mobile communication. In order to attenuate back-ground noise, speech enhancement systems have been integrated into mobile phones, and a microphone array is typically deployed to improve the enhancement performance. This paper proposes a novel approach to real-time speech enhancement for dual-microphone mobile phones. Our approach employs a causal densely-connected convolutional recurrent network to perform dual-channel complex spectral mapping. We apply a structured pruning technique for compressing the model without significantly affecting the enhancement performance. This leads to a real-time enhancement system for on-device processing. Evaluation results show that the pro-posed approach substantially advances the performance of an earlier approach to dual-channel speech enhancement for mobile communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures Multi-Decoder Dprnn: Source Separation for Variable Number of Speakers Topic-Aware Dialogue Generation with Two-Hop Based Graph Attention On The Accuracy Limit of Joint Time-Delay/Doppler/Acceleration Estimation with a Band-Limited Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1