分布式电磁频谱监测系统中基于蒙特卡罗算法的射频信号源目标检测方法

Zhenjia Chen, Lihui Wang
{"title":"分布式电磁频谱监测系统中基于蒙特卡罗算法的射频信号源目标检测方法","authors":"Zhenjia Chen, Lihui Wang","doi":"10.1109/ACAIT56212.2022.10137812","DOIUrl":null,"url":null,"abstract":"In order to improve the blind localization accuracy of radio signal sources, this paper proposes a radio frequency (RF) signal source target localization method based on Monte Carlo algorithm. Combined with the free-space propagation loss characteristics of electromagnetic waves, real-time electromagnetic spectrum detection data based on distributed detection nodes are analyzed. Based on the spatial distribution of electromagnetic spectrum, the target location method of radio frequency signal source is studied. Distributed detection nodes detect electromagnetic spectrum data of the same radio frequency signal source target at different spatial locations. The Monte Carlo algorithm is used for the cooperative detection target localization method of the RF signal source. With the increase of random times, the estimation result with the smallest cumulative distance error is used as the estimation result of the target position of the radio frequency signal source. The measured data show that the method can improve the blind detection and positioning accuracy of radio signal sources in the target area.","PeriodicalId":398228,"journal":{"name":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RF Signal Source Target Detection Method Based on Monte Carlo Algorithm in Distributed Electromagnetic Spectrum Monitoring System\",\"authors\":\"Zhenjia Chen, Lihui Wang\",\"doi\":\"10.1109/ACAIT56212.2022.10137812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the blind localization accuracy of radio signal sources, this paper proposes a radio frequency (RF) signal source target localization method based on Monte Carlo algorithm. Combined with the free-space propagation loss characteristics of electromagnetic waves, real-time electromagnetic spectrum detection data based on distributed detection nodes are analyzed. Based on the spatial distribution of electromagnetic spectrum, the target location method of radio frequency signal source is studied. Distributed detection nodes detect electromagnetic spectrum data of the same radio frequency signal source target at different spatial locations. The Monte Carlo algorithm is used for the cooperative detection target localization method of the RF signal source. With the increase of random times, the estimation result with the smallest cumulative distance error is used as the estimation result of the target position of the radio frequency signal source. The measured data show that the method can improve the blind detection and positioning accuracy of radio signal sources in the target area.\",\"PeriodicalId\":398228,\"journal\":{\"name\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACAIT56212.2022.10137812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAIT56212.2022.10137812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高射频信号源的盲定位精度,提出了一种基于蒙特卡罗算法的射频信号源目标定位方法。结合电磁波的自由空间传播损耗特性,对基于分布式检测节点的实时电磁频谱检测数据进行了分析。基于电磁波谱的空间分布,研究了射频信号源的目标定位方法。分布式检测节点对同一射频信号源目标在不同空间位置的电磁频谱数据进行检测。将蒙特卡罗算法用于射频信号源的协同检测目标定位方法。随着随机次数的增加,使用累积距离误差最小的估计结果作为射频信号源目标位置的估计结果。实测数据表明,该方法可以提高目标区域内无线电信号源的盲检测和定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RF Signal Source Target Detection Method Based on Monte Carlo Algorithm in Distributed Electromagnetic Spectrum Monitoring System
In order to improve the blind localization accuracy of radio signal sources, this paper proposes a radio frequency (RF) signal source target localization method based on Monte Carlo algorithm. Combined with the free-space propagation loss characteristics of electromagnetic waves, real-time electromagnetic spectrum detection data based on distributed detection nodes are analyzed. Based on the spatial distribution of electromagnetic spectrum, the target location method of radio frequency signal source is studied. Distributed detection nodes detect electromagnetic spectrum data of the same radio frequency signal source target at different spatial locations. The Monte Carlo algorithm is used for the cooperative detection target localization method of the RF signal source. With the increase of random times, the estimation result with the smallest cumulative distance error is used as the estimation result of the target position of the radio frequency signal source. The measured data show that the method can improve the blind detection and positioning accuracy of radio signal sources in the target area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transformer with Global and Local Interaction for Pedestrian Trajectory Prediction The Use of Explainable Artificial Intelligence in Music—Take Professor Nick Bryan-Kinns’ “XAI+Music” Research as a Perspective Playing Fight the Landlord with Tree Search and Hidden Information Evaluation Evaluation Method of Innovative Economic Benefits of Enterprise Human Capital Based on Deep Learning An Attribute Contribution-Based K-Nearest Neighbor Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1