A. Salem, M. Elsied, J. Druant, F. D. Belie, A. Oukaour, H. Gualous, J. Melkebeek
{"title":"一种先进的多电平变换器拓扑结构,减少了开关元件","authors":"A. Salem, M. Elsied, J. Druant, F. D. Belie, A. Oukaour, H. Gualous, J. Melkebeek","doi":"10.1109/IECON.2014.7048655","DOIUrl":null,"url":null,"abstract":"Smart grid applications, renewable energy utilization and electric vehicles (EVs) are attracting researchers due to their importance nowadays as well as in the future. An efficient power electronic converter is a main and common topic for research in this area. In this paper, a prototype of the electrical part of a power-train for EVs using an advanced multilevel converter topology is introduced, discussed and analysed. A comparison between the advanced converter, two-level and conventional multilevel converter topology is discussed as well. A switch function model is derived and discussed for the proposed converter. A mathematical model for the converter supplied by a fuel-cell (FC) and boost-converter (BC) is implemented with Matlab/Simulink. The simulation results are analysed to evaluate the converter. The evaluation is based on the harmonic analysis and power loss calculations. The converters are tested at different switching frequencies to show the effect of this variable on the converter loss. The results indicate that the proposed converter is 1.32% more efficient compared to conventional five-level DCC. Moreover, the lowest harmonic content, for all of the studied converters, is the proposed one.","PeriodicalId":228897,"journal":{"name":"IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An advanced multilevel converter topology with reduced switching elements\",\"authors\":\"A. Salem, M. Elsied, J. Druant, F. D. Belie, A. Oukaour, H. Gualous, J. Melkebeek\",\"doi\":\"10.1109/IECON.2014.7048655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart grid applications, renewable energy utilization and electric vehicles (EVs) are attracting researchers due to their importance nowadays as well as in the future. An efficient power electronic converter is a main and common topic for research in this area. In this paper, a prototype of the electrical part of a power-train for EVs using an advanced multilevel converter topology is introduced, discussed and analysed. A comparison between the advanced converter, two-level and conventional multilevel converter topology is discussed as well. A switch function model is derived and discussed for the proposed converter. A mathematical model for the converter supplied by a fuel-cell (FC) and boost-converter (BC) is implemented with Matlab/Simulink. The simulation results are analysed to evaluate the converter. The evaluation is based on the harmonic analysis and power loss calculations. The converters are tested at different switching frequencies to show the effect of this variable on the converter loss. The results indicate that the proposed converter is 1.32% more efficient compared to conventional five-level DCC. Moreover, the lowest harmonic content, for all of the studied converters, is the proposed one.\",\"PeriodicalId\":228897,\"journal\":{\"name\":\"IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2014.7048655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2014.7048655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An advanced multilevel converter topology with reduced switching elements
Smart grid applications, renewable energy utilization and electric vehicles (EVs) are attracting researchers due to their importance nowadays as well as in the future. An efficient power electronic converter is a main and common topic for research in this area. In this paper, a prototype of the electrical part of a power-train for EVs using an advanced multilevel converter topology is introduced, discussed and analysed. A comparison between the advanced converter, two-level and conventional multilevel converter topology is discussed as well. A switch function model is derived and discussed for the proposed converter. A mathematical model for the converter supplied by a fuel-cell (FC) and boost-converter (BC) is implemented with Matlab/Simulink. The simulation results are analysed to evaluate the converter. The evaluation is based on the harmonic analysis and power loss calculations. The converters are tested at different switching frequencies to show the effect of this variable on the converter loss. The results indicate that the proposed converter is 1.32% more efficient compared to conventional five-level DCC. Moreover, the lowest harmonic content, for all of the studied converters, is the proposed one.