投影聚类展开:偏好矩阵中个体或项目聚类的一种新算法

M. Sciandra, Antonio D’Ambrosio, A. Plaia
{"title":"投影聚类展开:偏好矩阵中个体或项目聚类的一种新算法","authors":"M. Sciandra, Antonio D’Ambrosio, A. Plaia","doi":"10.2139/ssrn.3209215","DOIUrl":null,"url":null,"abstract":"In the framework of preference rankings, the interest can lie in clustering individuals or items in order to reduce the complexity of the preference space for an easier interpretation of collected data. The last years have seen a remarkable owering of works about the use of decision tree for clustering preference vectors. As a matter of fact, decision trees are useful and intuitive, but they are very unstable: small perturbations bring big changes. This is the reason why it could be necessary to use more stable procedures in order to clustering ranking data. In this work, a Projection Clustering Unfolding (PCU) algorithm for preference data will be proposed in order to extract useful information in a low-dimensional subspace by starting from an high but mostly empty dimensional space. Comparison between unfolding configurations and PCU solutions will be carried out through Procrustes analysis.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projection Clustering Unfolding: A New Algorithm for Clustering Individuals or Items In A Preference Matrix\",\"authors\":\"M. Sciandra, Antonio D’Ambrosio, A. Plaia\",\"doi\":\"10.2139/ssrn.3209215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of preference rankings, the interest can lie in clustering individuals or items in order to reduce the complexity of the preference space for an easier interpretation of collected data. The last years have seen a remarkable owering of works about the use of decision tree for clustering preference vectors. As a matter of fact, decision trees are useful and intuitive, but they are very unstable: small perturbations bring big changes. This is the reason why it could be necessary to use more stable procedures in order to clustering ranking data. In this work, a Projection Clustering Unfolding (PCU) algorithm for preference data will be proposed in order to extract useful information in a low-dimensional subspace by starting from an high but mostly empty dimensional space. Comparison between unfolding configurations and PCU solutions will be carried out through Procrustes analysis.\",\"PeriodicalId\":299310,\"journal\":{\"name\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3209215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3209215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在偏好排序的框架中,兴趣可能在于聚类个人或项目,以减少偏好空间的复杂性,从而更容易解释收集到的数据。在过去的几年里,我们看到了大量关于使用决策树来聚类偏好向量的工作。事实上,决策树是有用和直观的,但它们非常不稳定:小的扰动会带来大的变化。这就是为什么有必要使用更稳定的过程来聚类排序数据的原因。在这项工作中,将提出一种针对偏好数据的投影聚类展开(PCU)算法,以便从高但大多为空的维空间开始,在低维子空间中提取有用的信息。展开配置和PCU解决方案之间的比较将通过Procrustes分析进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Projection Clustering Unfolding: A New Algorithm for Clustering Individuals or Items In A Preference Matrix
In the framework of preference rankings, the interest can lie in clustering individuals or items in order to reduce the complexity of the preference space for an easier interpretation of collected data. The last years have seen a remarkable owering of works about the use of decision tree for clustering preference vectors. As a matter of fact, decision trees are useful and intuitive, but they are very unstable: small perturbations bring big changes. This is the reason why it could be necessary to use more stable procedures in order to clustering ranking data. In this work, a Projection Clustering Unfolding (PCU) algorithm for preference data will be proposed in order to extract useful information in a low-dimensional subspace by starting from an high but mostly empty dimensional space. Comparison between unfolding configurations and PCU solutions will be carried out through Procrustes analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameters Estimation of Photovoltaic Models Using a Novel Hybrid Seagull Optimization Algorithm Input Indivisibility and the Measurement Error Quadratically optimal equilibrium points of weakly potential bi-matrix games Mathematical Background of the Theory of Cycle of Money An Example for 'Weak Monotone Comparative Statics'
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1