采用非局部结构张量的鲁棒边缘指示器

Xianghua Tan, Tao Tang
{"title":"采用非局部结构张量的鲁棒边缘指示器","authors":"Xianghua Tan, Tao Tang","doi":"10.1109/FSKD.2016.7603416","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust edge indicator employing two eigenvalues of nonlocal structure tensor matrix. In our method, a new nonlocal structure tensor is first constructed. This structure tensor is robust to noise, which inherits from nonlocal means algorithm. Furthermore, based on the constructed nonlocal structure tensor, a new and edge indicator is built, which can effectively differentiate a pixel at edge from a pixel in flat region with noise. Moreover, the proposed edge indicator can characteristic the strength of the edges. By experiments, the results of our method is superior to the gradient's results.","PeriodicalId":373155,"journal":{"name":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust edge indicator employing nonlocal structure tensor\",\"authors\":\"Xianghua Tan, Tao Tang\",\"doi\":\"10.1109/FSKD.2016.7603416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust edge indicator employing two eigenvalues of nonlocal structure tensor matrix. In our method, a new nonlocal structure tensor is first constructed. This structure tensor is robust to noise, which inherits from nonlocal means algorithm. Furthermore, based on the constructed nonlocal structure tensor, a new and edge indicator is built, which can effectively differentiate a pixel at edge from a pixel in flat region with noise. Moreover, the proposed edge indicator can characteristic the strength of the edges. By experiments, the results of our method is superior to the gradient's results.\",\"PeriodicalId\":373155,\"journal\":{\"name\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2016.7603416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2016.7603416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用非局部结构张量矩阵的两个特征值的鲁棒边缘指示器。该方法首先构造了一个新的非局部结构张量。该结构张量继承了非局部均值算法,对噪声具有较强的鲁棒性。在构造的非局部结构张量的基础上,构建了一个新的边缘和边缘指标,该指标能够有效地区分边缘和有噪声的平坦区域的像素。此外,所提出的边缘指标可以表征边缘的强度。通过实验,我们的方法的结果优于梯度法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust edge indicator employing nonlocal structure tensor
In this paper, we propose a robust edge indicator employing two eigenvalues of nonlocal structure tensor matrix. In our method, a new nonlocal structure tensor is first constructed. This structure tensor is robust to noise, which inherits from nonlocal means algorithm. Furthermore, based on the constructed nonlocal structure tensor, a new and edge indicator is built, which can effectively differentiate a pixel at edge from a pixel in flat region with noise. Moreover, the proposed edge indicator can characteristic the strength of the edges. By experiments, the results of our method is superior to the gradient's results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel electrons drifting algorithm for non-linear optimization problems Performance assessment of fault classifier of chemical plant based on support vector machine A theoretical line losses calculation method of distribution system based on boosting algorithm Building vietnamese dependency treebank based on Chinese-Vietnamese bilingual word alignment Optimizing self-adaptive gender ratio of elephant search algorithm by min-max strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1