替换路径通过快速矩阵乘法

O. Weimann, R. Yuster
{"title":"替换路径通过快速矩阵乘法","authors":"O. Weimann, R. Yuster","doi":"10.1109/FOCS.2010.68","DOIUrl":null,"url":null,"abstract":"Let G be a directed edge-weighted graph and let P be a shortest path from s to t in G. The replacement paths problem asks to compute, for every edge e on P, the shortest s-to-t path that avoids e. Apart from approximation algorithms and algorithms for special graph classes, the naive solution to this problem – removing each edge e on P one at a time and computing the shortest s-to-t path each time – is surprisingly the only known solution for directed weighted graphs, even when the weights are integrals. In particular, although the related shortest paths problem has benefited from fast matrix multiplication, the replacement paths problem has not, and still required cubic time. For an n-vertex graph with integral edge-lengths between -M and M, we give a randomized algorithm that uses fast matrix multiplication and is sub-cubic for appropriate values of M. We also show how to construct a distance sensitivity oracle in the same time bounds. A query (u,v,e) to this oracle requires sub-quadratic time and returns the length of the shortest u-to-v path that avoids the edge e. In fact, for any constant number of edge failures, we construct a data structure in sub-cubic time, that answer queries in sub-quadratic time. Our results also apply for avoiding vertices rather than edges.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Replacement Paths via Fast Matrix Multiplication\",\"authors\":\"O. Weimann, R. Yuster\",\"doi\":\"10.1109/FOCS.2010.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a directed edge-weighted graph and let P be a shortest path from s to t in G. The replacement paths problem asks to compute, for every edge e on P, the shortest s-to-t path that avoids e. Apart from approximation algorithms and algorithms for special graph classes, the naive solution to this problem – removing each edge e on P one at a time and computing the shortest s-to-t path each time – is surprisingly the only known solution for directed weighted graphs, even when the weights are integrals. In particular, although the related shortest paths problem has benefited from fast matrix multiplication, the replacement paths problem has not, and still required cubic time. For an n-vertex graph with integral edge-lengths between -M and M, we give a randomized algorithm that uses fast matrix multiplication and is sub-cubic for appropriate values of M. We also show how to construct a distance sensitivity oracle in the same time bounds. A query (u,v,e) to this oracle requires sub-quadratic time and returns the length of the shortest u-to-v path that avoids the edge e. In fact, for any constant number of edge failures, we construct a data structure in sub-cubic time, that answer queries in sub-quadratic time. Our results also apply for avoiding vertices rather than edges.\",\"PeriodicalId\":228365,\"journal\":{\"name\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2010.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2010.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

让G是一个有方向的edge-weighted图表,让P s t G是一个最短路径替换路径问题要求计算,对每条边e P, s-to-t最短路径,避免e。除了近似算法和算法为特殊图类,天真的解决这个问题——删除每条边e P一次和计算每次s-to-t最短路径——令人惊讶的是唯一已知的解决方案直接加权图,即使权值是积分。特别是,尽管相关的最短路径问题受益于快速矩阵乘法,但替换路径问题没有,并且仍然需要三次时间。对于边长在-M和M之间的n顶点图,我们给出了一种使用快速矩阵乘法的随机化算法,并且对于M的适当值是次三次的。我们还展示了如何在相同的时间范围内构造距离灵敏度oracle。对该oracle的查询(u,v,e)需要次二次时间,并返回避免边e的最短u到v路径的长度。事实上,对于任意常数次的边失败,我们在次三次时间内构建一个数据结构,该数据结构在次二次时间内回答查询。我们的结果也适用于避免顶点而不是边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Replacement Paths via Fast Matrix Multiplication
Let G be a directed edge-weighted graph and let P be a shortest path from s to t in G. The replacement paths problem asks to compute, for every edge e on P, the shortest s-to-t path that avoids e. Apart from approximation algorithms and algorithms for special graph classes, the naive solution to this problem – removing each edge e on P one at a time and computing the shortest s-to-t path each time – is surprisingly the only known solution for directed weighted graphs, even when the weights are integrals. In particular, although the related shortest paths problem has benefited from fast matrix multiplication, the replacement paths problem has not, and still required cubic time. For an n-vertex graph with integral edge-lengths between -M and M, we give a randomized algorithm that uses fast matrix multiplication and is sub-cubic for appropriate values of M. We also show how to construct a distance sensitivity oracle in the same time bounds. A query (u,v,e) to this oracle requires sub-quadratic time and returns the length of the shortest u-to-v path that avoids the edge e. In fact, for any constant number of edge failures, we construct a data structure in sub-cubic time, that answer queries in sub-quadratic time. Our results also apply for avoiding vertices rather than edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Computational Complexity of Coin Flipping The Monotone Complexity of k-clique on Random Graphs Local List Decoding with a Constant Number of Queries Agnostically Learning under Permutation Invariant Distributions Pseudorandom Generators for Regular Branching Programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1